
Preliminary Report on Polynomial-Time
Program Staging by Partial Evaluation

Robert Glück

DIKU, Dept. of Computer Science, University of Copenhagen, Denmark

Summary

Maximally-polyvariant partial evaluation is a strategy for program specialization
that propagates static values as accurate as possible [4]. The increased accuracy
allows a maximally-polyvariant partial evaluator to achieve, among others, the
Bulyonkov effect [3], that is, constant folding while specializing an interpreter.

The polyvariant handling of return values avoids the monovariant return
approximation of conventional partial evaluators [14], in which the result of a
call is dynamic if one of its arguments is dynamic. But multiple return values
are the “complexity generators” of maximally polyvariant partial evaluation be-
cause multiple continuations need to be explored after a call, and this degree of
branching is not bound by a program-dependent constant, but depends on the
initial static values. In an offline partial evaluator, a recursive call has at most
one return value that is either static or dynamic.

A conventional realization of a maximally-polyvariant partial evaluator can
take exponential time for specializing programs. The online partial evaluator [10]
achieves the same precision in time polynomial in the number of partial-evaluation
configurations. This is a significant improvement because no fast algorithm was
known for maximally-polyvariant specialization. The solution involves applying
a polynomial-time simulation of nondeterministic pushdown automata [11].

For an important class of quasi-deterministic specialization problems the par-
tial evaluator takes linear time, which includes Futamura’s challenge [8]: (1) the
linear-time specialization of a naive string matcher into (2) a linear-time matcher.
This is remarkable because both parts of Futamura’s challenge are solved. The
second part was solved in different ways by several partial evaluators, includ-
ing generalized partial computation by employing a theorem prover [7], perfect
supercompilation based on unification-based driving [13], and offline partial eval-
uation after binding-time improvement of a naive matcher [5]. The first part re-
mained unsolved until this study, though it had been pointed out [1] that manual
binding-time improvement of a naive matcher could expose static functions to
the caching of a hypothetical memoizing partial evaluator.

Previously, it was unknown that the KMP test [15] could be passed by a
partial evaluator without sophisticated binding-time improvements. Known so-
lutions to the KMP test include Futamura’s generalized partial computation
utilizing a theorem prover [8], Turchin’s supercompilation with unification-based
driving [13], and various binding-time-improved matchers [1, 5].



Preliminary Report on Polynomial-Time Program Staging 25

As a result, a class of specialization problems can now be solved faster than
before with high precision, which may enable faster Ershov’s generating exten-
sions [6,9,12], e.g., for a class similar to Bulyonkov’s analyzer programs [2]. This
is significant because super-linear program staging by partial evaluation becomes
possible: the time to run the partial evaluator and its residual program is linear
in the input, while the original program is not, as for the naive matcher.

This approach provides fresh insights into fast partial evaluation and accurate
program staging. This contribution summarizes [10, 11], and examines applica-
tions to program staging, and the relation to recursive pushdown systems.

References

1. M. S. Ager, O. Danvy, H. K. Rohde. Fast partial evaluation of pattern matching
in strings. ACM TOPLAS, 28(4):696–714, 2006.

2. M. A. Bulyonkov. Polyvariant mixed computation for analyzer programs. Acta
Informatica, 21(5):473–484, 1984.

3. M. A. Bulyonkov. Extracting polyvariant binding time analysis from polyvariant
specializer. In Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, 59–65. ACM Press, 1993.

4. N. H. Christensen, R. Glück. Offline partial evaluation can be as accurate as online
partial evaluation. ACM TOPLAS, 26(1):191–220, 2004.

5. C. Consel, O. Danvy. Partial evaluation of pattern matching in strings. Information
Processing Letters, 30(2):79–86, 1989.

6. A. P. Ershov. On the partial computation principle. Information Processing Let-
ters, 6(2):38–41, 1977.

7. Y. Futamura, Z. Konishi, R. Glück. Program transformation system based on
generalized partial computation. New Generation Computing, 20(1):75–99, 2002.

8. Y. Futamura, K. Nogi. Generalized partial computation. In D. Bjørner, A. P.
Ershov, N. D. Jones (eds.), Partial Evaluation and Mixed Computation, 133–151.
North-Holland, 1988.

9. R. Glück. A self-applicable online partial evaluator for recursive flowchart lan-
guages. Software – Practice and Experience, 42(6):649–673, 2012.

10. R. Glück. Maximally-polyvariant partial evaluation in polynomial time. In M. Maz-
zara, A. Voronkov (eds.), Perspectives of System Informatics. Proceedings, LNCS
9609. Springer-Verlag, 2016.

11. R. Glück. A practical simulation result for two-way pushdown automata. In Y.-S.
Han, K. Salomaa (eds.), Implementation and Application of Automata. Proceedings,
LNCS 9705. Springer-Verlag, 2016.

12. R. Glück, J. Jørgensen. Generating transformers for deforestation and supercom-
pilation. In B. Le Charlier (ed.), Static Analysis. Proceedings, LNCS 864, 432–448.
Springer-Verlag, 1994.

13. R. Glück, A. V. Klimov. Occam’s razor in metacomputation: the notion of a perfect
process tree. In P. Cousot, et al. (eds.), Static Analysis. Proceedings, LNCS 724,
112–123. Springer-Verlag, 1993.

14. N. D. Jones, C. K. Gomard, P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

15. M. H. Sørensen, R. Glück, N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.


