
Distilling New Data Types

Venkatesh Kannan and G. W. Hamilton

School of Computing, Dublin City University, Ireland
{vkannan, hamilton}@computing.dcu.ie

Abstract. Program transformation techniques are commonly used to
improve the efficiency of programs. While many transformation tech-
niques aim to remove inefficiencies in the algorithms used in a program,
another source of inefficiency is the use of inappropriate datatypes whose
structures do not match the algorithmic structure of the program. This
mismatch will potentially result in inefficient consumption of the input
by the program. Previously, Mogensen has shown how techniques similar
to those used in supercompilation can be used to transform datatypes,
but this was not fully automatic. In this paper, we present a fully auto-
matic datatype transformation technique which can be applied in con-
junction with distillation. The objective of the datatype transformation
is to transform the original datatypes in a program so that the result-
ing structure matches the algorithmic structure of the distilled program.
Consequently, the resulting transformed program potentially uses less
pattern matching and as a result is more efficient than the original pro-
gram.

1 Introduction

Fold/unfold program transformation has been used to obtain more efficient ver-
sions of programs. One of the primary improvements achieved by such trans-
formation techniques is through the elimination of intermediate data structures
that are used in a given program, referred to as fusion – combining multiple func-
tions in a program into a single function thereby eliminating the intermediate
data structure used between them. Transformation techniques such as supercom-
pilation [9, 10] and distillation [2] are based on the unfold/fold transformation
framework and achieve such improvements. In particular, the distillation trans-
formation can potentially result in super-linear speedup of the distilled program.

While unfold/fold program transformation redefines functions for optimisa-
tion, the data types of the programs produced remain unaltered. For instance,
we observe that the programs produced by the distillation transformation are
still defined over the original data types. Thus, another source of inefficiency
in a program is the potential mismatch of the structures of the data types in
comparison to the algorithmic structure of the program [5].

For instance, consider the simple program defined in Example 1 which reduces
a given list by computing the sum of neighbouring pairs of elements in the list.

Distilling New Data Types 59

Example 1 (Reduce Neighbouring Pairs).
reducePairs :: [Int]→ [Int]

reducePairs xs
where
reducePairs [] = []
reducePairs (x : []) = x : []
reducePairs (x1 : x2 : xs) = (x1 + x2) : (reducePairs xs)

Here, we observe that in order to pattern-match a non-empty list, reducePairs
checks if the tail is non-empty (in which case the second pattern (x : []) is
excluded), and then the tail is matched again in the third pattern (x1 : x2 : xs).
Also, the third pattern is nested to obtain the first two elements x1 and x2
in the list. While this pattern is used to obtain the elements that are used
in the function body, we observe that the structure of the pattern-matching
performed is inefficient and does not match the structure of the reducePairs
function definition. It desirable to have the input argument structured in such a
way that the elements x1 and x2 are obtained using a single pattern-match and
redundant pattern-matchings are avoided. One such definition of the reducePairs
function is presented in Example 2 on a new data type TreducePairs.

Example 2 (Reduce Neighbouring Pairs – Desired Program).
data TreducePairs ::= c1 | c2 Int | c3 Int Int TreducePairs

reducePairs xs
where
reducePairs c1 = []
reducePairs (c2 x) = x : []
reducePairs (c3 x1 x2 xs) = (x1 + x2) : (reducePairs xs)

In [6], Mogensen proposed one of the methods to address these issues by
creating data types that suit the structure of programs based on the supercom-
pilation transformation [10, 11]. The resulting transformed programs use fewer
constructor applications and pattern-matchings. However, the transformation
remains to be automated because functions that allow conversion between the
original and new data types were not provided.

In this paper, we present a data type transformation technique to automat-
ically define a new data type by transforming the original data types of a pro-
gram. The new transformed data type is defined in such a way that its structure
matches the algorithmic structure of the program. As a result, the transformed
input argument is consumed in a more efficient fashion by the transformed pro-
gram.

The proposed transformation is performed using the following two steps:

1. Apply the distillation transformation on a given program to obtain the dis-
tilled program. (Section 3)

2. Apply the proposed data type transformation on a distilled program to ob-
tain the transformed program. (Section 4)

60 Venkatesh Kannan and G. W. Hamilton

In Section 5, we demonstrate the proposed transformation with examples
and present the results of evaluating the transformed programs. In Section 6, we
discuss the merits and applications of the proposed transformation along with
related work.

2 Language

The higher-order functional language used in this work is shown in Definition 1.

Definition 1 (Language Grammar).
data T α1 . . . αM ::= c1 t

1
1 . . . t

1
N | . . . | cK tK1 . . . tKN Type Declaration

t ::= αm | T t1 . . . tM Type Component

e ::= x Variable
| c e1 . . . eN Constructor Application
| e0 Function Definition

where
f p11 . . . p

1
M x1(M+1) . . . x

1
N = e1

...
f pK1 . . . pKM xK(M+1) . . . x

K
N = eK

| f Function Call
| e0 e1 Application
| let x1 = e1 . . . xN = eN in e0 let–Expression
| λx.e λ–Abstraction

p ::= x | c p1 . . . pN Pattern

A program can contain data type declarations of the form shown in Definition 1.
Here, T is the name of the data type, which can be polymorphic, with type pa-
rameters α1, . . . , αM . A data constructor ck may have zero or more components,
each of which may be a type parameter or a type application. An expression e
of type T is denoted by e :: T .

A program in this language can also contain an expression which can be a
variable, constructor application, function definition, function call, application,
let-expression or λ-abstraction. Variables introduced in a function definition, let-
expression or λ-abstraction are bound, while all other variables are free. The free
variables in an expression e are denoted by fv(e). Each constructor has a fixed
arity. In an expression c e1 . . . eN , N must be equal to the arity of the constructor
c. For ease of presentation, patterns in function definition headers are grouped
into two – pk1 . . . p

k
M are inputs that are pattern-matched, and xk(M+1) . . . x

k
N

are inputs that are not pattern-matched. The series of patterns pk1 . . . p
k
M in a

function definition must be non-overlapping and exhaustive. We use [] and (:) as
shorthand notations for the Nil and Cons constructors of a cons-list.

Definition 2 (Context). A context E is an expression with holes in place
of sub-expressions. E[e1, . . . , eN] is the expression obtained by filling holes in
context E with the expressions e1, . . . , eN .

Distilling New Data Types 61

3 Distillation

Given a program in the language from Definition 1, distillation [2] is a technique
that transforms the program to remove intermediate data structures and yields
a distilled program. It is an unfold/fold-based transformation that makes use
of well-known transformation steps – unfold, generalise and fold [7] – and can
potentially provide super-linear speedups to programs.

The syntax of a distilled program de{} is shown in Definition 3. Here, ρ
is the set of variables introduced by let–expressions that are created during
generalisation. These bound variables of let-expressions are not decomposed by
pattern-matching in a distilled program. Consequently, de{} is an expression that
has fewer intermediate data structures.

Definition 3 (Distilled Form Grammar).

deρ ::= x deρ1 . . . de
ρ
N Variable Application

| c deρ1 . . . de
ρ
N Constructor Application

| deρ0 Function Definition
where
f p11 . . . p

1
M x1(M+1) . . . x

1
N = deρ1

...
f pK1 . . . pKM xK(M+1) . . . x

K
N = deρK

| f x1 . . . xM x(M+1) . . . xN Function Application
s.t. ∀x ∈ {x1, . . . , xM} · x 6∈ ρ

| let x1 = deρ1 . . . xN = deρN in de
ρ ∪ {x1,...,xN}
0 let–Expression

| λx.deρ λ–Abstraction

p ::= x | c p1 . . . pN Pattern

4 Data Type Transformation

A program in distilled form is still defined over the original program data types.
In order to transform these data types into a structure that reflects the structure
of the distilled program, we apply the data type transformation proposed in
this section on the distilled program. In the transformation, we combine the
pattern-matched arguments of each function f in the distilled program into a
single argument which is of a new data type Tf and whose structure reflects the
algorithmic structure of function f .

Consider a function f , with arguments x1, . . . , xM , x(M+1), . . . , xN , of the
form shown in Definition 4 in a distilled program. Here, a function body ek
corresponding to function header f pk1 . . . p

k
M xk(M+1) . . . x

k
N in the definition of

f may contain zero or more recursive calls to function f .

62 Venkatesh Kannan and G. W. Hamilton

Definition 4 (General Form of Function in Distilled Program).

f x1 . . . xM x(M+1) . . . xN
where
f p11 . . . p

1
M x(M+1) . . . xN = e1

...
...

f pK1 . . . pKM x(M+1) . . . xN = eK

The three steps to transform the pattern-matched arguments of function f
are as follows:

1. Declare a new data type for the transformed argument:
First, we declare a new data type Tf for the new transformed argument. This
new data type corresponds to the data types of the original pattern-matched
arguments of function f . The definition of the new data type Tf is shown in
Definition 5.

Definition 5 (New Data Type Tf).

data Tf α1 . . . αG ::= c1 T
1
1 . . . T

1
L (Tf α1 . . . αG)11 . . . (Tf α1 . . . αG)1J

...
| cK TK1 . . . TKL (Tf α1 . . . αG)K1 . . . (Tf α1 . . . αG)KJ

where
α1, . . . , αG are type parameters of the data types of pattern-matched

arguments.

∀k ∈ {1, . . . ,K}·
ck is a fresh constructor for Tf corresponding to pk1 . . . p

k
M of the

pattern-matched arguments.

f pk1 . . . p
k
M x(M+1) . . . xN = Ek

f x11 . . . x1M x1(M+1) . . . x
1
N ,

. . . ,
f xJ1 . . . x

J
M xJ(M+1) . . . x

J
N

{

(z1 :: T k1), . . . , (zL :: T kL)
}

= fv(Ek) \ {x(M+1), . . . , xN}

Here, a new constructor ck of the type Tf is created for each set pk1 . . . p
k
M

of the pattern-matched inputs x1 . . . xM of function f that are encoded. As
stated above, our objective is to transform the arguments of function f into
a new type whose structure reflects the recursive structure of f . To achieve
this, the components bound by constructor ck correspond to the variables in
pk1 . . . p

k
M that occur in the context Ek and the transformed arguments of the

recursive calls to function f .

2. Define a function to build the transformed argument:
Given a function f of the form shown in Definition 4, we define a function
encodef , as shown in Definition 6, to build the transformed argument for
function f .

Distilling New Data Types 63

Definition 6 (Definition of Function encodef).
encodef x1 . . . xM
where
encodef p

1
1 . . . p

1
M = e′1

...
...

encodef p
K
1 . . . pKM = e′K

where
∀k ∈ {1, . . . ,K}·
e′k = ck z

k
1 . . . z

k
L (encodef x

1
1 . . . x

1
M) . . . (encodef x

J
1 . . . x

J
M){

zk1 , . . . , z
k
L

}
= fv(Ek) \ {x(M+1), . . . , xN}

f pk1 . . . p
k
M x(M+1) . . . xN = Ek

f x11 . . . x1M x1(M+1) . . . x
1
N ,

. . . ,
f xJ1 . . . x

J
M xJ(M+1) . . . x

J
N

Here, the original arguments x1 . . . xM of function f are pattern-matched
and consumed by encodef in the same way as in the definition of f . For
each pattern pk1 . . . p

k
M of the arguments x1 . . . xM , function encodef uses the

corresponding constructor ck whose components are the variables zk1 , . . . , z
k
L

in pk1 . . . p
k
M that occur in the context Ek and the transformed arguments of

the recursive calls to function f .
3. Transform the distilled program :

After creating the transformed data type Tf and the encodef function for
each function f , we transform the distilled program as shown in Definition
7 by defining a function f ′, which operates over the transformed argument,
corresponding to function f .

Definition 7 (Definition of Transformed Function Over Transformed
Argument).
f ′ x x(M+1) . . . xN
where
f ′
(
c1 z

1
1 . . . z

1
L x11 . . . x

J
1

)
x(M+1) . . . xN = e′1

...
...

f ′
(
cK zK1 . . . zKL x1K . . . x

J
K

)
x(M+1) . . . xN = e′K

where
∀k ∈ {1, . . . ,K}·
e′k = Ek

[
f ′ x1k x

1
(M+1) . . . x

1
N , . . . , f

′ xJk x
J
(M+1) . . . x

J
N

]
f pk1 . . . p

k
M x(M+1) . . . xN = Ek

f x11 . . . x1M x1(M+1) . . . x
1
N ,

. . . ,
f xJ1 . . . x

J
M xJ(M+1) . . . x

J
N

The two steps to transform function f into function f ′ that operates over the
transformed argument are:

64 Venkatesh Kannan and G. W. Hamilton

(a) In each function definition header of f , replace the original pattern-
matched arguments with the corresponding pattern of their transformed
data type Tf .
For instance, a function header f p1 . . . pM x(M+1) . . . xN is transformed to
the header f ′ p x(M+1) . . . xN , where p is the pattern created by encodef
corresponding to the original pattern-matched arguments p1, . . . , pM .

(b) In each call to function f , replace the original arguments with their cor-
responding transformed argument.
For instance, a call f x1 . . . xM x(M+1) . . . xN is transformed to the func-
tion call f ′ x x(M+1) . . . xN , where x is the transformed argument corre-
sponding to the original arguments x1, . . . , xM .

4.1 Correctness

The correctness of the proposed transformation can be established by proving
that the result computed by each function f in the distilled program is the same
as the result computed by the corresponding function f ′ in the transformed
program. That is,(

f x1 . . . xM x(M+1) . . . xN
)

=
(
f ′ x x(M+1) . . . xN

)
where x = encodef x1 . . . xM

Proof:
The proof is by structural induction over the transformed data type Tf .

Base Case:
For the transformed argument xk = ck z

k
1 . . . z

k
L computed by encodef p

k
1 . . . p

k
M ,

1. By Definition 4, L.H.S. evaluates to ek.
2. By Definition 7, R.H.S. evaluates to ek.

Inductive Case:
For the transformed argument xk = ck z

k
1 . . . z

k
L x1k . . . xJk which is computed

by encodef p
k
1 . . . p

k
M ,

1. By Definition 4, L.H.S. evaluates to Ek

[
f x11 . . . x

1
M x1(M+1) . . . x

1
N , . . . ,

f xJ1 . . . x
J
M xJ(M+1) . . . x

J
N

]
.

2. By Definition 7, R.H.S. evaluates to Ek

[
f ′ x1k x

1
(M+1) . . . x

1
N , . . . ,

f ′ xJk x
J
(M+1) . . . x

J
N

]
.

3. By inductive hypothesis,
(
f x1 . . . xM x(M+1) . . . xN

)
=
(
f ′ x x(M+1) . . . xN

)
.
ut

5 Examples

We demonstrate and evaluate the data type transformation presented in this
paper using two simple examples, including the program introduced in Example
1, which are discussed in this section.

Distilling New Data Types 65

5.1 Reduce Neighbouring Pairs

The reducePairs program presented in Example 1 does not use any intermediate
data structures. Consequently, the result of applying the distillation transfor-
mation yields the same program. Following this, Example 3 presents the trans-
formed data type (TreducePairs), the transformation function (encodereducePairs)
and the transformed program (reducePairs ′) obtained for the reducePairs pro-
gram in Example 1.

Example 3 (Reduce Neighbouring Pairs – Transformed Program).
data TreducePairs a ::= c1

| c2 a
| c3 a a (TreducePairs a)

encodereducePairs [] = c1
encodereducePairs (x : []) = c2 x
encodereducePairs (x1 : x2 : xs) = c3 x1 x2 (encodereducePairs xs)

reducePairs′ xs
where
reducePairs′ c1 = []
reducePairs′ (c2 x) = x : []
reducePairs′ (c3 x1 x2 xs) = (x1 + x2) : (reducePairs′ xs)

5.2 Reduce Trees

To demonstrate our data type transformation, we present another program in
Example 4 that performs a reduction over a list of binary trees. Since this defi-
nition does not contain intermediate data structures, the result of applying the
distillation transformation is the same program.

Example 4 (Reduce Trees – Original/Distilled Program).
data BTree a ::= L

| B a [BTree a] [BTree a]

reduceTrees :: [BTree Int]→ Int

reduceTrees ts
where
reduceTrees [] = 0
reduceTrees (L : xs) = reduceTrees xs
reduceTrees

(
(B x lts rts) : xs

)
= x+ (reduceTrees lts)

+(reduceTrees rts) + (reduceTrees xs)

Example 5 presents the transformed data type (TreduceTrees), the transfor-
mation function (encodereduceTrees) and the transformed program (reduceTrees ′)
obtained for the distilled reduceTrees program using the proposed transforma-
tion.

66 Venkatesh Kannan and G. W. Hamilton

Example 5 (Reduce Trees – Transformed Program).
data TreduceTrees a ::= c1

| c2 (TreduceTrees a)
| c3 a (TreduceTrees a) (TreduceTrees a) (TreduceTrees a)

encodereduceTrees [] = c1
encodereduceTrees (L : xs) = c2 (encodereduceTrees xs)
encodereduceTrees

(
(B x lts rts) : xs

)
= c3 x (encodereduceTrees lts)

(encodereduceTrees rts)
(encodereduceTrees xs)

reduceTrees′ ts
where
reduceTrees′ c1 = 0
reduceTrees′ (c2 xs) = reduceTrees′ xs
reduceTrees′ (c3 x lts rts xs) = x+ (reduceTrees′ lts)

+(reduceTrees′ rts) + (reduceTrees′ xs)

5.3 Evaluation

For the two example programs presented in this section, we compare the exe-
cution times of the transformed functions reducePairs ′ and reduceTrees ′ against
those of their original versions reducePairs and reduceTrees, respectively, for
different input sizes. The resulting speedups achieved by these transformed pro-
grams are illustrated in Figure 1. Here, the input sizes for the reduceTrees pro-
gram are the number of values that are present in the input tree that is reduced.

We observe that, as a result of the reduced pattern-matchings performed in
the transformed programs, the transformed functions consume the transformed
arguments more efficiently resulting in a speedup of 1.26x – 1.67x for the two
examples evaluated in this section.

Additionally, Figure 2 illustrates the cost of transforming the arguments (us-
ing the encodef functions) in comparison with the total execution time of the
transformed program.

We observe that the cost of transforming the arguments is non-trivial. How-
ever, given the relation between the original data type and the new transformed
data type, which is defined by the encodef function, the user can benefit by
producing the inputs in the proposed transformed data type and by using the
efficient transformed program.

6 Conclusion

6.1 Summary

The data type transformation presented in this paper allows us to modify the
program data types into a structure that reflects the structure of the program
in distilled form. This is achieved by combining the original pattern-matched ar-
guments of each function in the distilled program. The transformation combines

Distilling New Data Types 67

Fig. 1. Speedups of Transformed Programs vs. Distilled Programs

Fig. 2. Cost Centre of Transformed Programs

groups of patterns that are matched with the arguments into a single pattern
for the transformed argument. By using the transformation function (encodef)
that specifies the correspondence between the original data types and the trans-

68 Venkatesh Kannan and G. W. Hamilton

formed data type, the user can produce a transformed argument which requires
less pattern-matching. Consequently, the transformed program can potentially
consume the input data in an optimised fashion.

Furthermore, this data type transformation can also be used to facilitate
automatic parallelisation of a given program. By defining algorithmic skeletons
that operate over the newly defined transformed data type, we can identify
instances of the skeletons – polytypic [4] and list-based [3] – in the transformed
program. Following this, we can use efficient parallel implementations of the
skeletons to execute the transformed program on parallel hardware.

6.2 Related Work

The importance of such data type transformation methods has been discussed in
other works such as [1,5]. Creating specialised data types that suit the structure
of a program can provide flexibility to statically typed languages that is similar
to dynamically typed languages.

Mogensen presented one of the initial ideas in [5] to address data type trans-
formation using constructor specialisation. This method improves the quality of
the transformed programs (such as compiled programs) by inventing new data
types based on the pattern-matchings performed on the original data types. It
is explained that such data type transformation approaches can impact the per-
formance of a program that uses limited data types to encode a larger family of
data structures as required by the program.

To improve on Mogensen’s work in [5], Dussart et al. proposed a polyvariant
constructor specialisation in [1]. The authors highlight that the earlier work by
Mogensen was monovariant since each data type, irrespective of how it is dy-
namically used for pattern-matching in different parts of a program, is statically
analysed and transformed. This monovariant design potentially produces dead
code in the transformed programs. Dussart et al. improved this by presenting
a polyvariant version where a data type is transformed by specialising it based
on the context in which it is used. This is achieved in three steps: (1) compute
properties for each pattern-matching expression in the program based on its con-
text, (2) specialise the pattern-matching expression using these properties, and
(3) generate new data type definitions using the specialisations performed.

More recently, in [6], Mogensen presents supercompilation for data types.
Similar to the unfold, fold and special-casing steps used in the supercompilation
transformation, the author presents a technique for supercompiling data types
using the three steps designed for data types. This technique combines groups of
constructor applications in a given program into a single constructor application
of a new data type that is created analogous to how supercompilation combines
groups of function calls into a single function call. As a result, the number of
constructor applications and pattern-matchings in the transformed program are
fewer compared to the regular supercompiled programs. What remains to be
done in this technique is the design of functions that allow automatic conversion
between the original and supercompiled data types. We address this aspect in

Distilling New Data Types 69

our proposed transformation technique by providing automatic steps to declare
the transformed data type and to define the transformation function.

In [8], Simon Jones presents a method to achieve the same objective of match-
ing the data types used by a program and the definition of the program. The
main difference to this approach is that their transformation specialises each
recursive function according to the structure of its arguments. This is achieved
by creating a specialised version of the function for each distinct pattern. Fol-
lowing this, the calls to the function are replaced with calls to the appropriate
specialised versions. To illustrate this transformation, consider the following def-
inition of function last, where the tail of the input list is redundantly checked by
the patterns (x : []) and (x : xs).

last [] = error “last”
last (x : []) = x
last (x : xs) = last xs

Such a definition is transformed by creating a specialised version of the last
function based on the patterns for the list tail, resulting in the following definition
for the last function which avoids redundant pattern-matching.

last [] = error “last”
last (x : xs) = last′ x xs

where
last′ x [] = x
last′ x (y : ys) = last′ y ys

This transformation was implemented as a part of the Glasgow Haskell Compiler
for evaluation and results in an average run-time improvement of 10%.

Acknowledgement

This work was supported, in part, by the Science Foundation Ireland grant
10/CE/I1855 to Lero - the Irish Software Research Centre (www.lero.ie).

References

[1] Dirk Dussart, Eddy Bevers, and Karel De Vlaminck. Polyvariant constructor
specialisation. Proceedings of ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation, 1995.

[2] G. W. Hamilton and Neil D. Jones. Distillation With Labelled Transition Systems.
Proceedings of the ACM SIGPLAN 2012 workshop on Partial Evaluation and
Program Manipulation, 2012.

[3] Venkatesh Kannan and G. W. Hamilton. Program Transformation to Identify
List-Based Parallel Skeletons. 4th International Workshop on Verification and
Program Transformation (VPT), 2016.

70 Venkatesh Kannan and G. W. Hamilton

[4] Venkatesh Kannan and G. W. Hamilton. Program Transformation to Identify
Parallel Skeletons. 24th International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), 2016.

[5] Torben Æ. Mogensen. Constructor specialization. Proceedings of the 1993 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Ma-
nipulation, pages 22–32, 1993.

[6] Torben Æ. Mogensen. Supercompilation for datatypes. Perspectives of System
Informatics (PSI), 8974:232–247, 2014.

[7] A. Pettorossi, M. Proietti, and R. Dicembre. Rules And Strategies For Trans-
forming Functional And Logic Programs. ACM Computing Surveys, 1996.

[8] Simon Peyton Jones. Call-pattern specialisation for haskell programs. SIGPLAN
Not., 42(9):327–337, 2007.

[9] M. H. Sørensen, R. Glück, and N. D. Jones. A Positive Supercompiler. Journal
of Functional Programming, 1996.

[10] Valentin F. Turchin. A Supercompiler System Based on the Language Refal.
SIGPLAN Notices, 1979.

[11] Valentin F. Turchin. The Concept of a Supercompiler. ACM Transactions on
Programming Languages and Systems, 1986.

	Introduction
	Language
	Distillation
	Data Type Transformation
	Correctness

	Examples
	Reduce Neighbouring Pairs
	Reduce Trees
	Evaluation

	Conclusion
	Summary
	Related Work

