
Enhanced PCB-Based Slicing

Husni Khanfar and Björn Lisper

School of Innovation, Design, and Engineering, Mälardalen University,
SE-721 23 Väster̊as, Sweden

{husni.khanfar,bjorn.lisper@mdh.se}@mdh.se

Abstract. Program slicing can be used to improve software reliability.
It enables identification and checking of critical points by removing pro-
gram parts that do not influence them. The standard slicing method
computes the dependencies of an entire program as a prerequisite to
the slicing. Demand-driven techniques such as our work Predicate Con-
trol Block (PCB)-based slicing computes only the dependencies affecting
critical points. This improves the performance for single slices.

This paper extends PCB-based slicing to efficiently compute several slices
from the same code. This is done by storing the computed data dependen-
cies in a form of graph to reuse them between individual slices. We also
show how PCB-based slicing can be done interprocedurally in a demand-
driven fashion. Moreover, we describe a filtering technique that reduces
the exploration of irrelevant paths. These two improvements enhance the
algorithm performance, which we show using synthetic benchmarks.

Keywords: Program Slicing, Reliable Software, Predicate Control Block

1 Introduction

Backward program slicing extracts the set of statements (so-called ”slice”) that
may affect a slicing criterion. A slicing criterion refers to the value of a particular
variable at a program location. In considering critical points in reliable systems
as slicing criteria, backward slicing enables us to study many aspects related to
those points. For a given slicing criterion, the slicing computes the statements,
inputs and conditions that possibly affect the slicing criterion. The effect can
appear by two ways: Control Dependence, which occurs where a predicate con-
trols the possible execution of statements and Data Dependence which occurs
when a variable updated at a statement is used in another.

Software programs are getting more complex and it is important for those
programs to be reliable. Software reliability refers to the continuity of correct
service [14]. To deliver a correct service, the cornerstone is in being fault-free. To
find faults, the static analysis methods such as path simulation or the verification
methods such as model checking are used. Larson states in [15] that “A major
problem with path-based defect detection systems is path explosion”. Model
checking performs automatic exhaustive testing and Choi et al states in [3] that
it might suffer from state-space explosion. The fact that program slicing reduces



72 Husni Khanfar and Björn Lisper

7)  if(senA > 25)
8)  else
9)  if(senB < 50)
10) else

1) if (btn==ON)
2)      v:=knb/2;
3) else v:= -1;
4) out = v;
5) out1 = out; 
6) out2 = out; 

Button Knob 

btn knb v1

Button Button

v2

Temperature 

Sensor 

Light 

Sensor 

out2 ActA ActB 

senA senB

11) procA(); 
12) if(btnA==ON) x=1 ; 
13) else  procB(); 
14) out = procC(); 

btnA btnB 

out out1

ActA = v1; 
ActA = NULL; 
ActB = v2; 
ActB = NULL;

Fig. 1: Simple Control Unit

the program size is important because it can help alleviate the path and state-
space explosion.

Program slicing can also be used to check for possible dependencies. consider
the simple control unit in Fig. 1. Assume that ActA is only to be controlled by
v1 and senA, the dependence on any other input being considered a fault. For
studying this system with respect to ActA, we choose ActA as a slicing criterion.
The slice taken will show that senA may be dependent on v1 and senA but is
surely not dependent on senB or v2, ensuring that the system is correct with
respect to input dependencies.

The unit in Fig. 1 has six inputs. If we suppose that each button has 2
states, each knob and sensor has 10 states, then we need 32K states to cover
all the input combinations. If the aim is to study ActA, then it is enough to
generate the states relevant to ActA. These relevant states are computed from
the inputs that ActA is dependent on. Notice that the slice of the control unit with
respect to ActA consists of the program lines: {1,2,3,4,6,7,8} and the program
inputs: {buttonA,Knob1,v1,senA}. In this case the number of states are: 400.
Apparently, the state-space is reduced significantly.

The most common slicing technique is designed on the program representa-
tion Program Dependence Graph (PDG) [11]. The PDG consists of nodes and
edges which represent statements and direct data and control dependencies re-
spectively. To construct a PDG, a deep comprehensive analysis is performed to
compute all dependencies in prior of the slicing. This analysis is reported by
many authors [3, 4, 6] as very time and space consuming.

Demand-driven approaches compute data and control dependencies on de-
mand during the slicing operation and not in prior. This gets rid of computing un-
related dependencies which cause unnecessary computations. Our previous work
in Predicate Control Block(PCB)-Based slicing [1] is an example of a demand-
driven approach. PCB is a basis of program representations that models well-
structured, inter-procedural and jump-free programs. This new slicing method
is designed for applications that are compliant with MISRA-C and SPARK,
which are software development guidelines for writing reliable and safety-critical
applications in C and Ada languages respectively.



Enhanced PCB-Based Slicing 73

Demand-driven slicing approaches focus on eliminating unrelated dependen-
cies, but these dependencies are not the only source of unnecessary computa-
tions. In computing data dependencies relevant to a particular program point p,
all backward or forward paths from p have to be explored. Most of these paths
do not include any relevant information. e.g. in Fig. 1 for ActA point, we explore
(9) and (10) and this is wasteful.

Sometimes, many critical points in a program need studying. Thus, a slice
for each point has to be produced. In demand-driven slicing approaches such as
PCB-based approach, when a source code is sliced many times in accordance
to many individual slicing criteria, the data dependencies involved in each slice
have to be computed from scratch even though some or all of them were already
computed for a previous slice. These computations are unnecessary because they
already were done before. e.g. in our example, (4) is dependent on (2) and (3)
which are dependent on (1). These dependencies affect out1 and out2. If out1

and out2 are two individual points of interest, then we must compute these
dependencies for each of them.

The contributions of this paper are:

1. Extending the PCB-based algorithm to reuse information from previous slic-
ing, making it more efficient when slicing the same code several times for
individual slicing criteria.

2. Extending the PCB-based algorithm to the interprocedural case. This was
sketched in [1]: here we explain the full method.

3. Clarifying some parts of the PCB-Based slicing algorithm presented in [1].
This includes the formal definition of how to represent programs by PCBs,
and how to handle the communication of data flow information between dif-
ferent program parts efficiently. Thus reducing the exploration of irrelevant
paths.

The rest of the paper is organized as follows. Section 2 introduces essential
background. In Section 3 we describe PCBs and summarizes PCB-Based slicing
approach in [1]. We illustrate how the data dependencies are saved and retrieved
between slices in Section 4, while in Section 5 the communications between
PCBs are filtered. Section 6 presents the two-modes algorithm. Section 7 onfly
interprocedual slicing, In Section 8 we give an account for our experimental
evaluation. Section 9 gives an account for related work, Section 10 concludes the
paper and Section 11 acknowledgments

2 Preliminaries

2.1 Model Language

WHILE is a simplified model language for languages for safety-critical applica-
tions, such as SPARK Ada and MISRA-C. A program is a statement (s) con-
sisting of a sequence of statements. WHILE statements are classified into two
main types; elementary and conditional statements. Elementary statements are



74 Husni Khanfar and Björn Lisper

assignment, skip, boolean expressions and the special in child explained later.
Conditional statements are if, while and ifelse statements.

We assume that each elementary and conditional statement is uniquely la-
beled in a program. Label is the set of global labels in a program and ` ∈
Label. Let a denote arithmetic expressions and b boolean expressions. The ab-
stract syntax of the WHILE language is:

cs ::=[if [b]` then s′]`
′
| [if [b]`,`

′
then s′ else s′′]`

′′
| [while [b]` do s′]`

′

es ::=[x := a]` | [b]` | [skip]` | [in child]`

s ::= es | s′; s′′ | cs

2.2 Strongly Live Variable (SLV) Analysis

A data dependence relation is a relation on program labels relating points of
variable definitions with their uses. We write `

v−→ `′ to signify that ` is data
dependent on `′, i.e., that the statement labeled `′ defines a variable v used by
the statement labeled `.

The data dependence relation has two sides: Definition and Use. The Defi-
nition is a statement where a variable (v) is updated and then reaches without
being redefined to a statement using v (Use). Accordingly, Use is data depen-
dent on Definition. In this context, the data dependence is symbolized by → as:

`
v−→ `′ ⊆ Label × V ar × Label (1)

where ` is data dependent on `′ in terms of the variable v. Sometimes, v is not
specified in this relation.

A variable v is live at program point p if there is a definition free path from a
use of v to p. A live variable analysis is a backward analysis [10] that computes
the set of live variables associated with each program point. Strongly live variable
analysis is a restriction of live variable analysis to an initial set of strong live
variables, which are the variables of interest [10]. Thus, a variable is strongly
live at program point p if there is a definition free path to a use of v and this
use defines another strongly live variable.

SLV is a data flow analysis [10]. It generates a variable used in a particular
statement as a SLV, propagates it backward untill reaching a statement defining
it where it is killed. Thus, SLV analysis can be utilized to find the definitions that
affect the used variables in a particular statement (use). This mechanism which
computes from a use the set of definitions affecting it, is the main requirement
in computing dynamically data dependence facts by backward slicing.

As a traditional dataflow method, SLV analysis relies on functions and equa-
tions; gen and kill functions generate and remove SLVs respectively from in-
dividual elementary statements, and the equations compose a mechanism to
propagate backward the SLVs. Since these equations are not used in PCB-based



Enhanced PCB-Based Slicing 75

slicing, they are not presented here. The functions are defined as follows:

kill(x := a) = {x}, kill(b) = ∅, kill(skip) = ∅, kill(in child) = Var

gen(x := a) = FV (a), gen(b) = FV (b), gen(skip) = ∅, gen(in child) = ∅
(2)

FV (a) denotes the set of program variables that appear in the expression a. Var
is the set of variables in a program.

3 PCB-Based Slicing

This section recaptures the notions of Predicate Control Blocks (PCBs), PCB
graphs and PCB based slicing as introduced in [1]. With respect to previous work
the section contributes by describing the derivation of PCBs and PCB graphs
in a more detailed manner.

3.1 Predicate Control Block Graphs

A PCB [1] refers to the encapsulation of a predicate and the set of elementary
statements which are controlled directly by this predicate.

p ::= {[b, es1, . . . , esn], type} (3)

In addition to a predicate and a sequence of statements, PCBs carry types,
type, signifying whether the PCB is linear, L, or cyclic, C. Intuitively, linear
PCBs correspond to conditional statements, such as if, and cyclic PCBs corre-
spond to iterative statements, such as while.

In the following let ++ denote concatenation of sequences and let : denote the
standard cons operator, i.e., b : [es1, · · · ] = [b, es1, · · · ]. Further, we lift sequence
indexing to PBCs where p[0] = b, and p[n] = esn for p = {[b, es1, . . . , esn], type}.

A PCB graph is a pair (φ, ε), consisting of a map from labels to PCBs, φ,
and a set of edges, ε, represented as pairs of labels. Following [1] we refer to the
edges of the PCB graph as interfaces, and write `1 ↪→ `2 instead of (`1, `2) ∈ ε,
whenever the PCB graph is given by the context.

The top-level translation of a program s to a PCB graph is defined as follows
for any ` not in s.

λ(s) = (φ[` 7→ {true` : es, L}, ε), where es, (φ, ε) = λ`(s)

The bulk of the translation is done by λ`(s), defined in Figure 2, where final
returns the last label in a sequence of elementary statements. Given a statement
s the λ`(s) returns a linearized translation of s together with the PCB graph
resulting from the translation. It might be worth pointing out a few key points of
the algorithm. First, each PCB inherits the label of its predicate. Second, since
if..else statements generate two PCBs, their predicates carry two distinct labels.
Third, the place of each conditional statement is replaced by a placeholder (skip



76 Husni Khanfar and Björn Lisper

for if or while; in child for if..else)1, whose label is the label of the original
statement. The translation of compound statements works by first translating
the parts, and then joining and extending the results to a new PCB graph.

λ`p([x := a]`) = [x := a]`, (∅, ∅)
λ`p([skip]`) = [skip]`, (∅, ∅)

λ`p([if b` then s]`
′
) = [skip]`

′
, (φ′, ε′)

where es, (φ, ε) = λ`(s) and φ′ = φ[` 7→ {b` : es, L}]
and ε′ = ε ∪ {`p ↪→ `, final(es) ↪→ `′}

λ`p([while b` do s]`
′
) = [skip]`

′
, (φ′, ε′)

where es, (φ, ε) = λ`(s) and φ′ = φ[` 7→ {b` : es, C}]
and ε′ = ε ∪ {`p ↪→ `, final(es) ↪→ `′}

λ`p([if b`,`
′
then s else s′]`

′′
) = [in child]`

′′
, (φ′′, ε′′)

where es, (φ, ε) = λ`(s) and es′, (φ′, ε′) = λ`′(s
′)

and φ′′ = (φ ∪ φ′)[` 7→ {b` : es, L}, `′ 7→ {¬b`
′

: es′, L}]
and ε′′ = ε ∪ ε′ ∪ {`p ↪→ `, final(es) 7→ `′′, `p ↪→ `′, final(es′) ↪→ `′′}

λ`p(s; s′) = es++ es′, (φ ∪ φ′, ε ∪ ε′)
where es, (φ, ε) = λ`p(s) and es′, (φ′, ε′) = λ`′p(s′)

and `′p = final(es)

Fig. 2: Computation of PCB graphs

To illustrate the algorithm consider the program in Figure 3. The algorithm
works recursively; in order to translate the top level program, the while and
the if must be translated. In the reverse order of the recursive calls, the if is
translated first, which gives P7. No interfaces are created, since the body of
the if does not contain any compound statements. The resulting PCB graph is
returned to the translation of the body of the while, and extended with P4 and
interfaces `3 ↪→ `7 and `8 ↪→ `4. This gives the PCB graph rooted in P4, which is
returned to the top-level translation and the graph. The final result is produced
by adding P0 and interfaces `1 ↪→ `4 and `9 ↪→ `3.

3.2 PCB-Based Slicing Approach

A slicing criterion is a pair of < `, v > where ` is a global label and v is a variable.
if ` belongs to the PCB P , then < `, v > is considered as a local problem in P .
< `, v > is solved in P by propagating it backward among the local statements
in P . The propagation starts from ` and its aim is to find the statement in P
that influences v at `. Since the propagation relies on the order of the internal
statements in the PCB, it is important to express the local problem by its local

1 The reason of using placeholders will be explained in Section 5



Enhanced PCB-Based Slicing 77

index (i) in P rather than its global label `. The local slicing problem in the
PCB does not have more than one local solution because each PCB has a unique
free-branching path.

𝓁3 

𝓁6 

[x:=1]𝓁1;  

[a:=7]𝓁2; 

while [x < 20]𝓁4 do 

        [m:=5]𝓁5;  

   if[a>8]𝓁7 then   

      [t:=20]𝓁8;

  [x:=x+1]𝓁9; 

[k:=x]𝓁10; 

[t:=x]𝓁11;  

[r:=m]𝓁12; 

[skip]𝓁13;  

(A) 

3  

4  

2  

(B) 

L 

  P0    P4  P7 

(0) [true]𝓁0  (0) [x < 20] 𝓁4  (0) [a>8] 𝓁7 

(1) [x:=1]𝓁1  (1) [m:=5] 𝓁5  (1) [t:=20] 𝓁8 

(2) [a:=7] 𝓁2  (2) [skip] 𝓁6  L 

(3) [skip] 𝓁3  (3) [x:=x+1] 𝓁9    

(4) [k:=x] 𝓁10  C    

(5) [t:=x] 𝓁11       

(6) [r:=m] 𝓁12       

(7) [skip] 𝓁13       

  

1  

Fig. 3: Example 1

Local slicing problems of the PCB are stored in a single set (S). The PCB
works as a standalone process that solves its local problems. Local problems are
solved individually. While solving a problem, this problem might be reproduced
in other PCBs, killed and new local problems might be generated. This cycle of
reproduction, killing, and generation of local problems are iteratively repeated
until no more local problem is available in any PCB.

The SLV query is solved by using kill and gen SLV functions. kill(s) gives
the variables that s defines. gen(s) generates new local slicing problems from s.
Therefore and henceforth, local slicing problem are named as SLV query.

Since the PCB represents a branch-free path, there is no use from using con-
ventional fixed point iterations, which is designed to work with tree of branches
and requires a set existing at each program point to save the SLVs reaching
this point. The PCB has a single set to preserve its SLV queries and each SLV
query is solved individually. The PCB encodes the direct control dependency.
This encoding enables to capture immediately the control dependencies from the
predicate of the PCB and the predicates of parents PCBs.

Suppose S(P ) is the single set of P . Each SLV query < i, v > is fetched
individually from S(P ). The first parameter which should be calculated for this
query is its end index e. In linear PCBs, e = 0. Otherwise, e = i + 1. Then,
< i, v > proceeds backward from P [i] toward P [e]. In circular PCBs, when
< i, v > reaches P [0], it propagates backward by jumping to the last label in P
and goes on backward until reaching P [i+ 1]. In this context, the index of each
visited statement in P will be j. Visiting P [j] by < i, v > causes one of these
three cases:

case 1: if v * kill(P [j]) and j 6= e, then S(P ) remains as is



78 Husni Khanfar and Björn Lisper

case 2: if v ⊆ kill(P [j]) then < i, v > is removed from S(P ) and does not
proceed more. if P [j] was not sliced before, then the variables used in P [j]
will be generated as SLV queries and added to S(P ). As well, P [j] is sliced.

case 3: if v * kill(P [j]) and j = e, then < i, v > is removed from S(P ) and
does not proceed more.

Example 1: In Fig. 3; Suppose < `13, r > is a global slicing criterion. It is
translated to the SLV query: < 7, r > in S(P0). Since P0 is a linear PCB, e = 0.
So, < 7, r > is solved locally in P0 by being propagated it from P0[7] to P0[0].
The first statement visited by < 7, r > is P0[7]. Considering that kill(P0[7]) = ∅
S(P0) remains as is. Next, < 7, r > visits P0[6]. Since kill(P0[6]) = r, P0[6]
is sliced, a new SLV query < 5,m > is generated, < 7, r > is removed from
S(P0) and it no longer proceeds. Similarly, < 5,m > is fetched and it visits the
statements from P0[5] to P0[0]. Since none of them kills m, < 5,m > is removed
from S(P0) after visiting P0[0]�

Notice that the value of m at P0[6] is affected also by P4[1]. Therefore, a new
slicing problem has to be created in P4 according to the following rule:

Suppose P and P ′ are two PCBs connected by P ′[j′] ↪→ P [j]. When an SLV
query < i, v > visits P [j] and not being killed at it, < i, v > is reproduced in P ′

as < j′, v >.

Example 2: In Fig. 3, P0 is connected to P4 by P4[3] ↪→ P0[3]. When < 5,m >
visits P0[3], it is reproduced in P4 as < 3,m >, which is processed in P4 by
visiting P4[3], P4[2] and P4[1]. At P4[2], it is reproduced in P7 as < 1,m > and
at P4[1] it is killed. The query < 1,m > in P7 does not have a local solution �

Each interface ` ↪→ `′ associates to a set Rm(` ↪→ `′), which saves the variable
part of each query reproduced through ` ↪→ `′. Rm works as a blacklist whose
elements are not allowed to be reproduced again through. This prevention is
important in avoiding a possible non-termination which could occur when an
SLV query < i, v > is generated in a cyclic PCB and neither this PCB nor its
child defines v. As a result, v would continuously be propagated between the
parent and its child.

For if and while conditional statement which exists in other parent blocks,
there is an execution path skipping the main body of the conditional state-
ment. Thus, the local analysis in the parent block can neglect the existence of
such conditional statements. For if-then-else conditional statement, there is no
such skipping path. Therefore, the local analysis in its parent block could not ne-
glect the existence of if-then-else statement. To handle this situation, if-then-else
conditional statement is replaced by an in child placeholder. in child, which is
designed especially for working as a placeholder for if-then-else statements, does
not generate any SLV but it kills any SLV query visits it. It has this property
because if-then-else has two branches, which both might kill the same variable.

For obtaining control dependencies; whenever any statement is sliced, then
the predicate s0 in its PCB has to be sliced if it was not sliced before. This
routine has to be recursively applied also to the parent predicate until reaching
the most outer PCB.



Enhanced PCB-Based Slicing 79

Suppose P is a child of the PCB P ′, as soon as P [k] is sliced, then P [0]
should be sliced if it was not sliced and the variables used in P [0] are generated
as SLV queries. In addition, P ′[0] should be sliced if it was not sliced before and
the variables used in it have to be generated as SLV queries.
Example 3: In Example 2, P4[0] is sliced due to slicing P4[1]. Thus, < 3, x > is
generated in P4 and solved internally at P4[3]. In addition, < 2, x > is reproduced
in P0 and solved at P0[1]. Based on that, the slice of the global slicing criterion
< 7, r > consists of: `12, `5, `9, `4, `1, `0 �

4 Partial Data Dependency Graph (PDDG)

Sometimes, the source code might be studied from many different perspectives.
e.g. the control unit of Example 1 might be studied first with respect to ActA and
then to ActB. Thus, the same code should be sliced many times for individual
slicing criteria. In PCB-based slicing, computing many slices suffers from the fact
that the same data dependency should be computed from scratch whenever it
becomes a requirement. This section shows a novel method to store and retrieve
the data dependencies between slices. To do so, the computed data dependencies
are stored in a graph form called Partial Data Dependence Graph (PDDG).

4.1 The Organization of a Partial Data Dependence Graph

In backward slicing, it is required to find the labels of definitions that may
affect the variables used in the sliced label `. PDDG is designed to store these
definitions in order to be retrieved later. To build a PDDG, a special set δ(`) is
added to each label (`). δ(`) is initialized to the empty set. In assuming ` is sliced,
each statement defining any variable used in ` should be computed, sliced and its
label has to be added to δ(`). Consequently, the data dependencies are organized
in PDDG as use-definitions form. In this form, the set of definitions affecting a
particular label are stored in this label, which is a use to those definitions. This
design enables to retrieve once all the definitions of this use when it is sliced
again for a different slicing criteria.

In subsection 3.2, we saw how the definitions of ` are computed by generating
an SLV query for each variable used in ` and propagate it backward. When the
query < i, v > generated from ` reaches a statement `′ defining v, then this is
the best time to capture the data dependency between ` and `′. The problem
is that the origin of < i, v > is not known because i is changed whenever it is
reproduced in a new PCB. Thus, a new field (src) is added to the SLV query
type, which becomes a triple: < loc, src, var >. src is assigned to the global
label, which the SLV query is generated from. Hence, if < i, `, v > is killed at
`′, then `

v−→ `′ which is satisfied by adding (`′, v) to δ(`). Based on that, δ(`) is
defined as:

δ(`) ⊆ P(LABEL × VAR) (4)

The reason of why δ(`) is not a pool of labels only will be explained in Section
4.2.



80 Husni Khanfar and Björn Lisper

4.2 The Hindrance of Interfaces

An interface ι is associated with a set Rm(ι) in order to prevent any variable from
being reproduced more than once. Since the same variable may exist in different
SLV queries, the interface black list may cause missing data dependences.
Example 4: In Fig. 3, if P0[4] and P0[5] are sliced, then SLV queries< 3, P0[4], x >
and < 4, P0[5], x > are added to S(P0). Suppose < 4, P0[5], x > is fetched first,
then it is solved at P0[1]. As well, when < 4, P0[5], x > visits P0[3], it is repro-
duced through ι2 in P4 as < 3, P0[5], x > and Rm(ι2) = {x}. At P4, it is solved at
P4[3], So, δ(P0[5]) = {(P0[1], x), (P4[3], x)}. < 3, P0[4], x > is solved also at P0[1]
but it could not be reproduced through ι2 because x ∈ Rm(ι2). Thus, (P4[3], x)

could not be added to δ(P0[4]). In other words, P0[4]
x−→ P4[3] is not recognized

�
The hindrance of interface is resolved by using a transition point, which

refers to a label (t) existing in the path from `′ and `, where `
v−→ `′. The

transition point helps in expressing a data dependence relation by two fake
data dependencies. Accordingly, `

v−→ `′ is represented by `
v−→ t and t

v−→ `′. To
overcome the hindrance of the interface (`1 ↪→ `2), we consider its ingoing side `2
as a transition point. Hence, if the SLV query < i, `, v > visits `2 and kill(`2) 6= v

then the fake data dependence src
v−→ `2 is created by adding (`2, v) to δ(`). If

< i, `, v > is allowed to be reproduced in M(`1), then it will be reproduced as
< i′, `2, v >, where i′ is the index of `1 in M(`1).
Example 5: Example 4 is resolved as follows: when < 4, P0[5], x > reaches P0[3],
then it is reproduced in P4 as < 3, P0[3], x > and (P0[3], x) is added to δ(P0[5]).
When < 3, P0[4], x > reaches P0[3], (P0[3], x) is added to δ(P0[4]) without being

reproduced at P4. Hence, P0[5]
x−→ P4[3] is expressed as P0[5]

x−→ P0[3] and

P0[3]
x−→ P4[3]. Similarly, P0[4]

x−→ P4[3] is expressed as P0[4]
x−→ P0[3] and

P0[3]
x−→ P4[3] �

Notice that in (4), we defined δ(`) as a pool of pairs rather than a pool of labels.
This organization prevents creating non-existing dependencies. See Example 12.

Example 12 Suppose ι = `i ↪→ `j is in the path of: `1
x−→ `a and `2

y−→ `b. If δ
was a set of labels only, the following data dependencies would be represented:
`1 −→ `j , `2 −→ `j , `j −→ `a and `j −→ `b, which means `1 is data dependent on `b
and this is not correct.

5 SLV Filtering

In PCB-based program representation, interfaces correspond to edges in CFG
program representations. Both of them are constructed to model program flows.
In this section we explain in depth how the interfaces are implemented in an
efficient manner to prevent SLV queries from exploring irrelevant PCBs or paths.
This presentation eliminates unnecessary computations.

The cornerstone in making SLV filtration is in associating the interfaces with
whitelist sets rather than blacklists which we introduced in Section 3.2. The
White List is a smart way to implement the black list in a “negative” way,



Enhanced PCB-Based Slicing 81

ɩ5  

P0 

 [true] 0 

 [x:=1] 1 

 [j:=7] 2 

 [m:=-1] 3 

 [skip] 6 

 [in_child] 11 

 [skip] 14 

 [r:=j+m+t] 15 

P4 

[b1]
 4  

[t:=20] 5 

P7 

 [b2]
 7 

 [j:=5] 9 

P8 

¬[b2]
 8 

 [x:=10] 10 

P12 

[b3]
 12   

[x:=x+2] 13 

ɩ3  

ɩ4  

ɩ6  

ɩ2  

ɩ1  

ɩ7  

ɩ8  

(B) PCB-Based Representation (A) Source Code 

[x:=1] 1;  

[j:=7] 2; 

[m:=-1] 3; 

if[b1]
 4 then 

  [t:=20] 5; 

if[b2]
 7 8  then 

    [j:=5] 9;  

else [x:=10] 10;  

while[b3]
 12  do    

                      [x:=x+2] 13; 

[r:=j+m+t] 15 

 
14

 

 
11

  

 
6

 

Fig. 4: PCB-Based Representation (Whitelists + Placeholders)

representing what is allowed to go through rather than what is not allowed to go
through. The whitelist set associated with an interface ι = P.` ↪→ P ′.`′, where
P is a child to P ′, is initialized to the variables defined in P and its child PCBs.
The whitelist associated with ι is denoted Wm(ι). As soon as any of the variables
stored inWm(ι) is reproduced through ι, this variable is removed fromWm(ι) and
it becomes no longer allowed to be reproduced again. Based on that, the number
of the variables in the whitelist is in the worst case proportional to the number
of the variables in P and it is decremented after every reproduction. When the
whitelist set becomes empty, then its interface could be deleted to relieve the
analysis from the overhead of its existence. This is contrary to the blacklists
whose sizes in the worst case are proportional to the number of the variables in
the program and they increments after every reproduction. Apparently, changing
from blacklists to whitelists makes a significant improvement. (See Table 2 in
Section 8.2)

Example 5: Fig.4 is an example of preventing SLV queries from exploring ir-
relevant paths. Suppose `15 is sliced and three SLV queries are generated whose
variable components are m,x and t. Notice the t has a definition in P4. In back-
ward dataflow analysis techniques, t propagates in all statements in P12, P8, P7

and P4 although its unique external solution is in P4. Similarly, j is reproduced
in P13, P8, P7 and P4 although it is defined only in P7. Figure 4-B shows four
ingoing interfaces to P0: ι2, ι4, ι6 and ι8. Their whitelist sets are initialized to:
Wm(ι2) = {t}, Rm(ι4) = {j}, Wm(ι6) = {x} and Wm(ι8) = {x}. When t is
generated as an SLV from P0.`15, it visits `14 and `11 and neglects P12, P8 and
P7 because their whitelists do not include t. When it visits `6, t is reproduced
in P4 because it defines t. To sum up, we can say that t is forwarded directly to
P4.



82 Husni Khanfar and Björn Lisper

6 Two-Mode PCB Slicing Algorithm

The PDDG stores and retrieves data dependencies between slices. This mecha-
nism is yielded by designing a slicing method that behaves in two modes. In the
first mode the definitions influencing ` are retrieved from δ(`) and the second
mode generates the variables used in ` as SLV queries to reach these definitions.
The contents of δ(`) assist the analysis to determine in any mode it should run
when ` is sliced.

Alg.5a slices the internal labels of the PCB P with respect to SLV queries
stored in SP . These SLVs are fetched individually (line 4) until no more query
exists (3). The SLV query < i, s, v > visits local statements from i to e, which
is calculated at (7-8). j refers to the index of the current visited statement. j is
calculated from the type of P and the current value of j (10).

When < i, s, v > visits P [j], we check whether P [j] kills v. If it does not (14),
then v is reproduced if P [j] is an ingoing side of an interface (15). Otherwise
(16), P [j] should be sliced (18,19) and added to δ(s) (17). At this point, there are
two modes; if P [j] was already sliced in a previous slice (20) then the definitions
stored in δ(P [j]) should be sliced by the procedure Trck(21). Otherwise, the
second mode generates the variables used in P [j] as SLV queries in SP (23) and
in SP ′ if there is P ′.`′ ↪→ P [j](25) . After every visit, SP is updated according to
the transfer function f j,e(i,s,v)(SP ) shown in Fig.5e. This function has three cases:

< i, s, v > is removed from SP , SP is not updated and finally, < i, s, v > is
removed from SP and the variables used in the current visited statement P [j]
are generated as SLV queries.

Trck(`, var,Nslc) (Fig.5d) traces use-definition chains from `. This is per-
formed by first slicing the definitions stored in δ(`). Then Trck is called recur-
sively to slice the definitions which are stored in each of these labels and so on.
In the pool δ(`), we slice every label stored in δ(`) unless ` is a placeholder. In
this case, we slice only the labels that influence var.

Suppose ` that exists in P is sliced. Since ` is control dependent on P [0], P [0]
should be sliced, which in its turn is control dependent on the predicate of P
parent and so on. In Fig. 5d, this hierarchical structure of control dependencies
goes on until reaching the PCB representing the most outer PCB.

Fig.5d shows Intfc function. This function reproduces var from ` to P ′[k]
if ` is an ingoing side of an interface connecting ` with P ′[k].

Finally, the role of Select function is in fetching individually the SLV queries
from SP . The role of Parent(P) is in getting the parent PCB of P .

7 On-the-fly Interprocedural Slicing

In our previous work [1], we sketched an inter-procedural slicing algorithm for
procedures having a single out formal argument and a single return statement.
This section extends this method to be applied to real procedures, which have
many out formal arguments and multiple return statements or points. Further-
more, the construction of PCBs in inter-procedural programs is formalized math-



Enhanced PCB-Based Slicing 83

ematically, the syntax of the model language is extended to accommodate inter-
procedural programs, the special transfer function for call sites is improved, and
the super interface concept is introduced.

a: SlicePCB(P, I, Nslc)

1// P: current PCB. I:Interfaces
2// Nslc:sliced labels

3while SP 6= ∅ do
4 < i, s, v >:= Select(SP ) ;
5 j := −1;
6 if (P is C and i 6= final(P)) then
7 e := i+ 1
8 else e = 0;
9 repeat

10 switch j do
11 case j = −1 : j := i; break;
12 case j > 0 : j := j − 1; break;
13 case j = 0 : j := final(P ) ;

14 if (v 6∈ kill(P [j])) then
15 Intrfc(P [j], s, v, I);
16 else
17 δ(s) := {δ(s) ∪ (P [j], v)};
18 if (P [j] 6∈ Nslc) then
19 Nslc := Nslc ∪ {P [j]};
20 if (δ(P [j]) 6= ∅) then
21 Trck(P [j], v,Nslc);
22 else

23 SP := f j,e
(i,s,v)(SP );

24 foreach x ∈ gen(P [j]) do
25 Intfc(P [j], P [j], x, I);

26 Cntrl(P,Nslc, I);

27 break;// Fetch new SLV

28 until j = e;

29return Nslc;

b: Intfc(`, src, var, I)

1 foreach (P ′[k] ↪→ ` ∈ I) do
2 i = P ′[k] ↪→ `;
3 if (var ∈Wm(i)) then
4 Wm(i) := Wm(i)\{var} ;
5 SP ′ := SP ′ ∪ {(k, src, var)};
6return;

c: Trck(`, var,Nslc)

1 foreach (`′, var′) ∈ δ(`) do
2 if s` 6= skip ∧s` 6= in child then
3 Nslc := Nslc ∪ `′ ;
4 Trck(`′, var′, Nslc );
5 Cntrl(M(`), Nslc, I)

6 else
7 if var′ = var then
8 Nslc := Nslc ∪ `′ ;
9 Trck(`′, var′, Nslc );

10return;

d: Cntrl(P,Nslc, I)

1repeat
2 if (P [0] ∈ Nslc ) then return;
3 Nslc := Nslc ∪ P [0];
4 if (δ(P [0]) 6= ∅) then
5 foreach v ∈ gen(P [0]) do
6 Trck(P [0], v,Nslc );

7 else
8 SP := SP ∪ {(0, P [0], v)|v ∈

gen(P [0])}
9 foreach v ∈ gen(P [0]) do

10 Intfc(P [0], P [0], v, I);

11 P := parent(P );

12until P 6= ∅;
13return;

e: Transfer Function

f j,e
(i,s,v)(SP ) =

SP \{(i, s, v)} if (j = e ∧ v 6∈ kill(P [j]))

∨ (v ∈ kill(P [j]) ∧ P [j] ∈ Nslc)

∨ (v ∈ kill(P [j]) ∧ δ(P [j]) 6= ∅)

SP if j 6= e ∧ v 6∈ kill(P [j])

SP \{(i, s, v)}∪{(j−1, P [j], u)|u ∈ gen(P [j])}

if v ∈ kill(P [j]) ∧ P [j] 6∈ Nslc ∧ δ(P [j]) = ∅

Fig. 5: Two-Mode Algorithms



84 Husni Khanfar and Björn Lisper

The algorithm is restricted to non-recursive procedures. This is a common
restriction in safety-critical applications.

To be able to study inter-procedural slicing we must extend the language
with procedure declarations and procedure call. Procedure declarations consist
of a name, zero or more formal arguments and a body. The formal arguments
are declared to be either in arguments, that pass information into the procedure,
or out arguments that in addition pass information from the procedure to the
caller. The global variables are considered out arguments. Procedure calls are,
without loss of generality, restrained to variables. Let F range over procedure
names and let ψP [j] denote the bijective function that maps the actual arguments
at call site P [j] to the formal arguments of the procedure. For a procedure F
and its output formal parameter v, µF (v) refers to the set of formal arguments
that might influence v. The extended syntax is defined as follows.

p ::= d | d p
arg ::= in x | out x

d ::= [proc F arg s]`F

es ::= . . . | [call F x]` | [return]`

We extend the notion of interfaces from being between two labels to being
a relation on sets of labels. For clarity we write ` for the singleton set {`}. Let
calls(F ) be the set of labels of calls to F .

To compute the PCB-graph in the presence of procedures, the algorithm
found in Section 3.1 is extended as shown in Figure 6.

λ`p([call F x]`) = [call F x]`, (∅, ∅)
λ`p([return]`) = [return]`, (∅, {` ↪→ calls(F )})

On the top-level

λ([proc F arg s]`) = (φ[` 7→ {true` : es, L}], ε ∪ {calls(F ) ↪→ `})
where es, (φ, ε) = λ`(s)

λ(d p) = (φ1 ∪ φ2, ε1 ∪ ε2)

where es, (φ1, ε2) = λ(d) and (φ2, ε2) = λ(p)

Fig. 6: Extension of PCB graph computation

The resulting algorithm introduces two inter-procedural interfaces: one going
from the call sites to the entry label of the procedure (Many-to-One Interface)
and one going from a return label to the call sites (One-to-Many Interface). Each
of these two interfaces could be expressed by a set of a normal interfaces (single-



Enhanced PCB-Based Slicing 85

ton label to singleton label). Thus, Many-to-One and One-to-Many interfaces
are referred to Super Interfaces.

The Super Interface comprises of many thin parts linked through a joint to a
single thick part. Together with the single thick part, each thin part constitutes
a normal interface. Hence, the thick part is shared between all normal interfaces
contained in a super interface. This design allows some inter-procedural informa-
tion to be shared between the different call sites of a procedure, whereas other
information is exclusively linked to individual call sites

ɩ5  

ɩ2 

ɩ4  

 

[true] 0; 

[i:=4] 1;  

[j:=1] 2;  

[u:=2] 3;  

[call F(t,h,i,j,u)] 5; 

[k:=8] 8;  

[m:=12] 9;  

[n:=9] 10;  

[call proc(a,b,c,m,n)] 11; 

[m = t1 + t4] 13;  

  

 

 

[F(out r,out k,in 

x,in y,in z)] 20  

 

[if( x > y )] 21 { 

 [r = x * y] 22;  

 [return] 23;  

} 

else  

 [r = 2 * x] 24;  

[k = y — z] 25;  

[return] 26;  

 

Fig. 7: Inter-procedural Example

In Fig. 7, a Many-to-One super interface is: `5, `11 ↪→ `20. It contains two
normal interfaces: `5 ↪→ `20 and `11 ↪→ `20. Further, we have two One-to-Many
interfaces: `23 ↪→ `3, `5 and `26 ↪→ `4, `6. Similarly, each could be expressed by
two normal interfaces.

The shared thick part in a Many-to-One interface is linked with a µF def-
inition for each out formal argument. The thin part holds a ψ−1j definition for

each formal argument. In Fig. 7, the thin part of ι1 associates with ψ−1`5
(r) = t,

ψ−1`5
(k) = h, ψ−1`5

(x) = i, ψ−1`5
(y) = j, ψ−1`5

(j) = u. The thin part of ι2 associates

with ψ−1`11
(r) = a, ψ−1`11

(k) = b, ψ−1`11
(x) = c, ψ−1`11

(y) = m, ψ−1`11
(j) = n. The thick

shared part of ι1 and ι2 contains µ`20(r) and µ`20(k).
The thick shared part in a One-to-Many super interface associates with a

white list that contains initially all the out formal arguments. A thin part con-
necting a return statement to a j call site holds a ψj definition for each out actual
argument at j. Based on that, the shared thick part in `5, `11 ↪→ `20 associates
with Rm = {r, k}. The thin part in ι3 holds ψ`5(t) = r and ψ`5(h) = k.

The SLV queries reproduced through super interfaces are processed in two
stages, one over the thick part and the another in the thin part regardless of the
order, before they reach the opposite sides. We indicate to this fact by saying



86 Husni Khanfar and Björn Lisper

the variable is thrown on a thin or thick part. The throwing of a variable on a
super interface part means that the variable is going to be processed according
to the stage of this part.

There are two types of inter-procedural slicing. The first type is the Up
slicing. Up slicing occurs when the procedure body is a source of SLV queries
due to the existence of slicing criteria in it. Since any of call sites might run the
procedure body, the procedure header is control dependent on all its call sites.
Thus, the direction of SLV queries is from the procedure body to all its call sites.

The second type is the Down slicing. This type refers to the situation where
a particular call site is the source of SLV queries in a procedure body. Therefore,
for the statements which are sliced in the procedure body with respect of these
SLV queries, the procedure header is control dependent on this call site. In
other words, in down slicing, the SLV queries reach a procedure’s header are not
reproduced in all call sites. Instead, the transfer function shown in Sec. 7.1 is
applied.

To maintain the context-sensitivity, we define two stacks, STcall and STvar.
STcall stores the last call site and STvar stores the formal arguments used to
compute µF .

7.1 The Transfer Function

In the down slicing, when the call site whose label is P [j] is visited by an SLV
query < i, s, x >, SP has to be updated according to the following transfer
function:

f j,Fi,e,x(SP ) ={
SP ψj(x) is undefined

SP \{(i, s, x)}∪{(j−1, P [j], ψ−1
j (u) |u ∈ µF (ψj(x))} µF (ψj(x)),ψj(x) defined

(5)

The first case occurs when x is not an out actual argument at P [j], so SP is
not updated. In the second case, x is an out actual argument at P [j], µF (ψj(x)) is
computed. Thus, < i, s, x > is killed and the actual arguments at P [j] whose cor-
respondent formal arguments belong to µF (ψj(x)) are generated as SLV queries.

7.2 The Algorithm of Down Slicing and the Computation of µF

Suppose P [j] is a call site of F and ιr is an interface from P [j] to a return
statement in F and ιh is an interface from F header to P [j]. The down slicing
algorithm is:

1. When an SLV query < i, s, x > visits a call site P [j] and x is an out argument
at P [j], then:
– if ιh contains an already computed µF (ψP [j](x)), then we go to 9

Note: ιh and ιr are known from the call site side.
– Otherwise:
• x is thrown on the thin part of ιr.



Enhanced PCB-Based Slicing 87

• The analysis is completely frozen on P [j] side.
2. if the thin part of ιr receives a variable x, then we get ψP [j](x), say v. Then,
v is pushed in STvars and P [j] is pushed in STcalls. Finally, v is thrown on
the thick part of ιr.

3. At the thick part of ιr, v is removed from Wm(ιr) and it is reproduced in
the opposite side of ιr (a return statement in F ).

4. F ’s body is sliced with respect to the SLV queries of its PCBs. When no
more SLV query is alive in F ’s PCBs, we move to the thick part of the
many-to-one interface.

5. In the thick part of the many-to-one super interface:
– We read from the top of STvars the formal argument which F is sliced

with respect to. In other words, we retrieve v. Then we redefine µF (v)
held by the thick part from the dependencies from v at return statements
to F ’s formal parameters located in F ’s header. The edges of PDDG can
be tracked to find these dependencies.

– We retrieve from the top of STcalls the call site, which is P [j]. From P [j]
we find ιh. Then we move to the thin part of ιh.

6. By using the ψ−1P [j] definitions held by the thin part of ιh, we reverse each

formal argument in µF (v) to its actual argument at P [j].
7. STvar and STcalls are popped.
8. P is released from being frozen.
9. The transfer function in Eq. 5 is applied and computed from µF (v) and ψ−1P [j]

definitions held in ιh.
10. The analysis goes on.

8 Results and Discussions

To measure the efficiency of the proposed approach, we have implemented four
algorithms:

– A: implements the proposed methods in this paper; two-modes PCB-based
algorithm, PDDG and filtering SLVs through shrinking sets.

– B: is an implementation of the original PCB-based slicing [1]. It produces
single slices, filters SLVs by whitelists, but it does not implement PDDG.

– C: PDG-based slicing [11]
– D: is an implementation of the original PCB-based slicing [1]. It produces

single slices, filters SLVs by blacklists and it does not implement PDDG.

These algorithms are implemented by using Microsoft Visual C++ 2013. The
experiments have been run on an Intel Core i5 with a 2.66GHz processor, 8 GB
RAM, and 64-bit operating system.

8.1 The Efficiency of Using PDDG and Two-Mode Algorithm

To setup the comparisons, a synthetic program is produced automatically. It is
an intra-procedural program, 125K statements, the predicates constitute 26%



88 Husni Khanfar and Björn Lisper

N
o
.S

lice

S
lice

S
ize

(A
)

m
s

(B
)

m
s

S
p

eed
u
p

(C
)

m
s

1 69% 234 180 0,8 12204

2 33% 468 108 0,2 1

3 14% 1 54 54 1

4 15% 1 54 54 1

5 51% 234 144 0,6 1

6 21% 1 72 72 1

7 79% 18 216 12 1

8 58% 1 180 180 1

9 40% 1 108 108 1

10 37% 1 108 108 1

11 45% 1 126 126 1

12 10% 1 18 18 1

13 20% 1 72 72 1

14 39% 1 108 108 1

15 50% 1 144 144 1

sum 965 1692 12204

Table 1

of the program, and it has 50 variables. This program has to be sliced by (A),
(B) and (C) according to 15 distinct and individual slicing criteria.

In Table 1, the first entry shows the times for computing the first slice. Then,
for each subsequent slice, the additional time for computing this slice is shown.
The last entry shows the total times for computing all 15 slices. The second
column gives the size of each slice relative the size of the whole program.

(B) computes every slice individually from scratch. (B) shows that as slices
gets bigger, more computations are performed and intuitively more execution
time is consumed. (C) shows that for PDG-based slicing, the first slice is the
heaviest than others with respect to the execution time. Afterwards, very little
time is consumed to compute each slice.

most the PDDG is constructed while (A) computes the slices: (1,2,5). Af-
terwards, the speedups (B / A) shown in the fifth column vary from 4.8 to 156
for the slices from 5 to 15. Hence, the data dependencies that are accumulated
in (1,2,5) are used in computing the slices from 6 to 15. The main advantage
of the two-modes slicing algorithm is that it does not need a full comprehen-
sive analysis of the program at the beginning. As well, it does not lose previous
computations.

In comparing (A) and (C), we find that both of them depend on a graph
form to retrieve their dependencies. By comparing their results, we find that
for the slices from 6 to 15, the execution times are very close together, which
is because for both algorithms the slicing mainly turns into a backwards search
in a dependence graph. Finally, the last row accumulates the execution times



Enhanced PCB-Based Slicing 89

obtained by each implementation. The results indicate that the two-modes slic-
ing perform significantly better than our previous PCB-based algorithm when
computing many slices for the same code, and that also PDG-based slicing is
outperformed for a moderate number of slices.

8.2 Whitelist vs Blacklist

The two local implementations (B and D) are used to measure the results of the
change from blacklists to whitelists. To do so, six synthetics source code programs
were produced to be analyzed by (B) and (D). These six programs differ in their
number of variables, which varies from 25 to 800. To ensure fair comparisons,
other factors which could influence execution times are fixed. Thus, the size of
each synthetic program is 50K, the number of predicates in every program is
around 6500 and the slice size is 70% from the total size.

No. Var. 25 50 100 200 400 800

Blacklists - D (s) 0.10 0.35 1.85 10.85 64 424

Whitelists - B (s) 0.014 0.052 0.083 0.146 0.25 0.48

Speedup (D/B) 7.1 6.7 22.2 74.3 256 883

Table 2: Whitelists vs Blacklists

There are two facts can be easily read from Table. 2, the first is that us-
ing whitelists enhances significantly the performance of the analysis. The sec-
ond, which is more important than the first, shows that the superiority of the
whitelists increases as more variables are added to the source code. While more
variables are added to program, thus generating more SLV queries, moving more
SLV queries between the PCBs and performing more operations through black
and white lists. Since the blacklists sizes are proportional to the number of the
programs’ variables and on the other side, the whitelists sizes are proportional
to the PCBs’ variables, the execution times of (D) shows much more higher
sensitivity than (B) to the change of the number of programs’ variables.

9 Related Work

Program slicing was first introduced by Weiser [13] in the context of debugging.
Ottenstein et al. [9, 11] introduced the PDG, and proposed its use in program
slicing. PDG-based slicing has then been the classical program slicing method.
Horwitz et al. [17] extended the PDG to as System Dependence Graph to capture
calling context of procedures.

Hanjal and Forgàcs [6] propose a complete demand-driven slicing algorithm
for inter-procedural well-structured programs. Their method is based on the
propagation of tokens over Control Flow Graph (CFG). Harrold and Ci [16]
propose a demand-driven method that computes only the information which



90 Husni Khanfar and Björn Lisper

is needed in computing a slice. Harrold’s method is based in Augmented CFG
(ACFG). Furthermore, there are more special works for computing interproce-
dural information in a demand-driven way [18,19].

10 Conclusions and Future Work

We have shown how to extend our previous algorithm for demand-driven slic-
ing of well-structured programs [1] into an algorithm that can efficiently com-
pute several slices for the same program. The main mechanism for achiveing
good performance is to store and reuse previously computed data dependencies
across several slices. We also make some clarifications regarding the original al-
gorithm [1], including a formal description how the underlying PCB program
representation is computed from the program code, and a description of how the
“filtering” of Strongly Live Variables at interfaces can be implemented efficiently.

An experimental evaluation indicates that the new two-mode algorithm, with
stored and reused data dependences, performs considerably better than the pre-
vious version when taking several slices of the same code. It also performs sig-
nificantly better than the standard, PDG-based algorithm in the experiment

There are a number of possible future directions. One direction is to directly
apply the slicing algorithm to speed up the verification of safety-critical soft-
ware. For instance, SPARK Ada programs are often filled with assertions to be
checked during the verification process. Formal methods for checking assertions,
like symbolic execution [20], can be very prone to path explosion: slicing with
respect to different slicing criteria derived from the assertions can then help to
keep the complexity under control. A second direction is to generalise the slicing
approach to richer languages including procedures, pointers, and object-oriented
features, and to gradually relax the requirements on well-structuredness. A fi-
nal observation is that the SLV analysis performed by our algorithm provides a
pattern to perform other dataflow analyses, like Reaching Definitions and Very
Busy Expressions [10], efficiently on well-structured code.

11 Acknowledgments

The authors thank Daniel Hedin, Daniel Kade, Iain Bate and Irfan Sljivo for
their helpful comments and suggestions. This work was funded by The Knowl-
edge Foundation (KKS) through the project 20130085 Testing of Critical System
Characteristics (TOCSYC), and the Swedish Foundation for Strategic Research
under the SYNOPSIS project.

References

1. Khanfar, H., Lisper, B., Abu Naser, M.: Static Backward Slicing for Safety Crit-
ical Systems. ADA-Europe 2015, The 20th International Conference on Reliable
Software Technologies, , 9111 (50-65), June 2015



Enhanced PCB-Based Slicing 91

2. Lisper, B., Masud, A.N., Khanfar, H.: Static backward demand-driven slicing. In:
Proceedings of the 2015 Workshop on Partial Evaluation and Program Manipula-
tion. pp. 115–126. PEPM ’15, ACM, New York, NY, USA (2015)

3. Yunja Choi, Mingyu Park, Taejoon Byun, Dongwoo Kim: Efficient safety checking
for automotive operating systems using property-based slicing and constraint-based
environment generation. Sci. Comput. Program. 103: 51-70 (2015)

4. Kraft, J.: Enabling Timing Analysis of Complex Embedded Software Systems.
Ph.D. thesis, Mälardalen University Press (August 2010)

5. Ákos Hajnal and István Forgács: A precise demand-driven definition-use chaining
algorithm, Software Maintenance and Reengineering, 2002. Proceedings. Sixth Eu-
ropean Conference on, Budapest, 2002, pp. 77-86. doi: 10.1109/CSMR.2002.995792

6. Ákos Hajnal and István Forgács: A demand-driven approach to slicing legacy
COBOL systems”,Journal of Software Maintenance,volume 24, no. 1, pages67–82,
2012

7. Agrawal, G.: Simultaneous demand-driven data-flow and call graph analysis, in
Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International Confer-
ence on Software Maintenance, ICSM 1999,pages 453–462.

8. Agrawal, H.: On slicing programs with jump statements. SIGPLAN Not. 29(6),
302–312 (Jun 1994)

9. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (Jul 1987)

10. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd edition.
Springer (2005), iSBN 3-540-65410-0

11. Ottenstein, K.J., Ottenstein, L.M., The program dependence graph in a software
development environment. SIGSOFT Softw. Eng. Notes 9(3), 177–184 (Apr 1984)

12. Tip, F., A survey of program slicing techniques. Journal of Programming Lan-
guages 3, 121–189 (1995)

13. Weiser, M.: Program Slicing. IEEE Transactions on Software Engineering, 352–357
(Jul 1984)

14. Dimov Aleksandar and Chandran, Senthil Kumar and Punnekkat, Sasikumar: How
Do We Collect Data for Software Reliability Estimation, 11th International Con-
ference on Computer Systems and Technologies,CompSysTech ’10,2010, ACM.

15. Eric Larson: Assessing Work for Static Software Bug Detection, 1st ACM Interna-
tional Workshop on Empirical Assessment of Software Engineering Languages and
Technologies, WEASELTech ’07, 2007, ACM NewYork

16. M. J. Harrold and N. Ci, Reuse-driven interprocedural slicing. In The 20th Inter-
national Conference on Software Engineering, pages 7483, Apr. 1998.

17. S. Horwitz, T. Reps, and D. Binkley: Interprocedural slicing using dependence
graphs”. ACM Transactions on Programming Languages and Systems (TOPLAS),
Volume 12 Issue 1, Jan. 1990, 26-60. ACM New York, NY, USA

18. E. Duesterwald and M. L. Sofifa: Demand-driven computation of interprocedural
data flow. In Proceedings of 22nd ACM Symposium on Principles of Programmzng
Languages, pages 37-48, January 1995.

19. S. Horwitz, T. Reps, and M. Sagiv: Demand interprocedural dataflow analysis.
SIGSOFT ’95 Proceedings of the 3rd ACM SIGSOFT symposium on Foundations
of software engineering, pages 104-115, 1995. ACM New York.

20. J.C. King: Symbolic Execution and Program Testing, Communications of the
ACM, Vol: 19, No. 7, July 1976, pp. 385-394. ACM New York


	Introduction
	Preliminaries
	Model Language
	Strongly Live Variable (SLV) Analysis

	PCB-Based Slicing
	Predicate Control Block Graphs
	PCB-Based Slicing Approach

	Partial Data Dependency Graph (PDDG)
	The Organization of a Partial Data Dependence Graph
	The Hindrance of Interfaces

	SLV Filtering
	Two-Mode PCB Slicing Algorithm
	On-the-fly Interprocedural Slicing
	The Transfer Function
	The Algorithm of Down Slicing and the Computation of F 

	Results and Discussions 
	The Efficiency of Using PDDG and Two-Mode Algorithm
	Whitelist vs Blacklist

	Related Work
	Conclusions and Future Work
	Acknowledgments

