
On a Method of Verification
of Functional Programs

Andrew M. Mironov

Moscow State University

amironov66@gmail.com

Abstract. In this paper the problem of verification of functional pro-
grams (FPs) over strings is considered, where specifications of properties
of FPs are defined by other FPs, and a FP Σ1 meets a specification de-
fined by another FP Σ2 iff a composition of functions defined by the FPs
Σ1 and Σ2 is equal to the constant 1. We introduce a concept of a state
diagram of a FP, and reduce the verification problem to the problem
of an analysis of the state diagrams of FPs. The proposed approach is
illustrated by the example of verification of a sorting program.

Keywords: functional program, state diagram, verification

1 Introduction

The problem of program verification is one of the main problems of theoretical
computer science. For various classes of programs there are used various verifi-
cation methods. For example, for a verification of sequential programs there are
used Floyd’s inductive assertions method [1], Hoare logic [2], etc. For verification
of parallel and distributed programs there are used methods based on a calculus
of communicating systems (CCS) and π-calculus [3], [4], a theory of communi-
cating sequential processes (CSP) and its generalizations [5], [6], temporal logic
and model checking [7], process algebra [8], Petri nets [9], etc.

Main methods of verification of functional programs (FPs) are computational
induction and structural induction [10]. Disadvantages of these methods are
related to difficulties to construct formal proofs of program correctness. Among
other methods of verification of FPs it should be noted a method based on
reasoning with datatypes and abstract interpretation through type inference [12],
a model checking method to verify FPs [13], [14], methods based on flow analysis
[11] methods based on the concept of a multiparametric tree transducer [15].

In this article we consider FPs as systems of algebraic equations over strings.
We introduce a concept of a state diagram for such FPs and present the verifica-
tion method based on the state diagrams. The main advantages of our approach
in comparison with all the above approaches to verification of FPs are related
to the fact that our approach allows to present proofs of correctness of FPs in
the form of simple properties of their state diagrams.

140 Andrew Mironov

The basic idea of our approach is the following. We assume that a specifica-
tion of properties of a FP under verification Σ1 is defined by another FP Σ2,
whose input is equal to the output of Σ1, i.e. we consider FP Σ1 ◦Σ2, which is
a composition Σ1 and Σ2. We say that a FP Σ1 is correct with respect to the
specification Σ2 iff the input-output map fΣ1◦Σ2

, which corresponds to the FP
Σ1 ◦Σ2 (i.e. fΣ1◦Σ2 is a composition of the input-output maps corresponded to
Σ1 and Σ2) has an output value 1 on all its input values. We reduce the problem
of a proving the statement fΣ1◦Σ2

= 1 to the problem of an analysis of a state
diagram for the FP Σ1 ◦Σ2.

The proposed method of verification of FPs is illustrated by an example of
verification of a sorting FP. At first, we present a complete proof of correctness of
this FP by structural induction. This is done for a comparison of the complexity
of a manual verification of the FP on the base of the structural induction method,
and the complexity of the proposed method of automatic verification of FPs.
At second, we present a correctness proof of the FP by the method based on
constructing its state diagram. The proof by the second method is significantly
shorter, and moreover, it can be generated automatically. This demonstrates the
benefits of the proposed method of verification of FPs in comparison with the
manual verification based on the structural induction method.

2 Main concepts

2.1 Terms

We assume that there are given sets

– D of values, which is the union DC ∪ DS, where
• elements of DC are called symbols, and
• elements of DS are called symbolic strings (or briefly strings), and

each string from DS is a finite (maybe empty) sequence of elements of
DC,

– X of data variables (or briefly variables)
– C of constants,
– F of functional symbols (FSs), and
– Φ of functional variables

where each element m of any of the above sets is associated with a type desig-
nated by the notation type(m), and

– if m ∈ D ∪ X ∪ C, then type(m) ∈ {C,S},
– if m ∈ F ∪Φ, then type(m) is a notation of the form t1× . . .× tn → t, where
t1, . . . , tn, t ∈ {C,S}.

If d ∈ DC, then type(d) = C, and if d ∈ DS, then type(d) = S.
Each constant c ∈ C corresponds to an element of Dtype(c), called a value of

this constant. The notation ε denotes a constant of the type S, whose value is
an empty string. We assume that ε is the only constant of the type S.

On a Method of Verification of Functional Programs 141

Each FS f ∈ F corresponds to a partial function of the form Dt1×. . .×Dtn →
Dt, where

type(f) = t1 × . . .× tn → t.

This function is denoted by the same symbol f .
Below we list some of the FSs which belong to F . Beside each FS we point

out (with a colon) its type.

1. head : S → C. The function head is defined for non-empty string, it maps
each non-empty string to its first element.

2. tail : S→ S. The function tail is defined for non-empty string, it maps each
non-empty string u to a string (called a tail of u) derived from u by removal
of its first element.

3. conc : C × S → S. For each pair (a, u) ∈ DC × DS the string conc(a, u) is
obtained from u by adding the symbol a before.

4. empty : S → C. Function empty maps empty string to the symbol 1, and
each non-empty string to the symbol 0.

5. =: C×C→ C. The value of the function = on the pair (u, v) is equal to 1
if u = v, and 0 otherwise.

6. ≤: C ×C → C. We assume that DC is linearly ordered set, and the value
of the function ≤ on the pair (u, v) is equal to 1 if u ≤ v, and 0 otherwise.

7. Boolean FSs: ¬ : C→ C, ∧ : C×C→ C, etc., corresponding functions are
standard boolean functions on the arguments 0 and 1 (i.e. ¬(1) = 0,, etc.)
and are not defined on other arguments.

8. if then else : C× t× t→ t, where t = C or S (i.e. the notation if then else
denotes two FSs), and functions corresponding to both FSs are defined by
the same way:

if then else (a, u, v)
def
=

{
u, if a = 1
v, otherwise.

A concept of a term is defined inductively. Each term e is associated with a
certain type type(e) ∈ {C,S}. Each data variable and each constant is a term,
a type of which is the same as the type of this variable or constant. If e1, . . . , en
is a list of terms and g is a FS or a functional variable such that

type(g) = type(e1)× . . .× type(en)→ t

then the notation g(e1, . . . , en) is a term of the type t.
We shall denote terms

head(e), tail(e), conc(e1, e2), empty(e),
= (e1, e2), ≤ (e1, e2), if then else (e1, e2, e3)

in the form

eh, et, e1e2, [[e = ε]], [[e1 = e2]], [[e1 ≤ e2]], [[e1]] e2 : e3

respectively. Terms containing boolean FSs will be denoted as in mathematical
texts (i.e. in the form e1 ∧ e2, etc.). Terms of the form e1 ∧ . . . ∧ en can also be
denoted as [[e1, . . . , en]].

142 Andrew Mironov

2.2 A concept of a functional program over strings

A functional program over strings (referred below as a functional pro-
gram (FP)) is a set Σ of functional equations of the formϕ1(x11, . . . , x1n1

) = e1
. . .
ϕm(xm1, . . . , xmnm) = em

(1)

where ϕ1, . . . , ϕm are distinct functional variables, and for each i =
1, . . . ,m ϕi(xi1, . . . , xini

) and ei are terms of the same type, such that

Xei = {xi1, . . . , xini
}, Φei ⊆ {ϕ1, . . . , ϕm}

(where Xe and Φe are sets of all data variables and functional variables respec-
tively occurred in the term e). We shall use the notation ΦΣ for the set of all
functional variables occurred in Σ.

FP (1) specifies a list
(fϕ1

, . . . , fϕm
) (2)

of functions corresponding to the functional variables from ΦΣ , which is the
least (in the sense of an order on lists of partial functions, described in [10])
solution of (1) (this list is called a least fixed point (LFP) of the FP (1),
all details related to the concept of a LFP can be found in chapter 5 of the
book [10]). Values of these functions can be calculated by a standard recursion.
We assume that for each FP under consideration all components of its LFP are
total functions. First function in the list (2) (i.e. fϕ1

) is denoted by fΣ , and is
called a function corresponding to Σ. If Σ has the form (1), then type(Σ)
denotes the type type(e1).

3 Example of specification and verification of a FP

3.1 Example of a FP

Consider the following FP:

sort(x) = [[x = ε]] ε : insert(xh, sort(xt))
insert(a, y) = [[y = ε]] aε

: [[a ≤ yh]] ay
: yh insert(a, yt)

(3)

This FP defines a function of string sorting. The FP consists of two equations,
which define the following functions:

– sort : S→ S is a main function, and
– insert : C×S→ S is an auxiliary function, which maps a pair (a, y) ∈ C×S

to the string derived by an insertion of the symbol a to the string y, with
the following property: if the string y is ordered, then the string insert(a, y)
also is ordered.
(we say that a string is ordered, if its components form a nondecreasing
sequence).

On a Method of Verification of Functional Programs 143

3.2 Example of a specification of a FP

One of correctness properties of FP (3) it the following: ∀x ∈ S the string
sort(x) is ordered. This property can be described formally as follows. Consider
a FP defining a function ord of string ordering checking:

ord(x) = [[x = ε]] 1
: [[xt = ε]] 1

: [[xh ≤ (xt)h]] ord(xt) : 0
(4)

The function ord allows to describe the above property of correctness as the
following mathematical statement:

∀x ∈ S ord(sort(x)) = 1 (5)

3.3 Example of a verification of a FP

The problem of verification of the correctness property of FP (3) consists of a
formal proof of (5). This proposition can be proved like an ordinary mathematical
theorem, for example using the method of mathematical induction. For example,
a proof of this proposition can be the following.

If x = ε, then, according to first equation of system (3), the equality sort(x) =
ε holds, and therefore

ord(sort(x)) = ord(ε) = 1.

Let x 6= ε. We prove (5) for this case by induction. Assume that for each
string y, which is shorter than x, the equality

ord(sort(y)) = 1

holds. Prove that this implies the equality

ord(sort(x)) = 1. (6)

(6) is equivalent to the equality

ord(insert(xh, sort(xt))) = 1 (7)

By the induction hypothesis, the equality

ord(sort(xt)) = 1

holds, and this implies (7) on the reason of the following lemma.

Lemma.
The following implication holds:

ord(y) = 1 ⇒ ord(insert(a, y)) = 1 (8)

144 Andrew Mironov

Proof.
We prove the lemma by induction on the length of y.
If y = ε, then the right side of(8) has the form

ord(aε) = 1

which is true by definition ord.
Let y 6= ε, and for each string z, which is shorter than y, the following

implication holds:

ord(z) = 1 ⇒ ord(insert(a, z)) = 1 (9)

Let c
def
= yh, d

def
= yt.

(8) has the form

ord(cd) = 1 ⇒ ord(insert(a, cd)) = 1 (10)

To prove the implication (10) it is necessary to prove that if ord(cd) = 1,
then the following implications hold:

(a) a ≤ c ⇒ ord(a(cd)) = 1,
(b) c < a ⇒ ord(c insert(a, d)) = 1.

(a) holds because a ≤ c implies

ord(a(cd)) = ord(cd) = 1.

Let us prove (b).

– d = ε. In this case, right side of (b) has the form

ord(c(aε)) = 1 (11)

(11) follows from c < a.

– d 6= ε. Let p
def
= dh, q

def
= dt.

In this case, it is necessary to prove that if c < a, then

ord(c insert(a, pq)) = 1 (12)

1. if a ≤ p, then (12) has the form

ord(c(a(pq))) = 1 (13)

Since c < a ≤ p, then (13) follows from the equalities

ord(c(a(pq))) = ord(a(pq)) = ord(pq) =
= ord(c(pq)) = ord(cd) = 1

On a Method of Verification of Functional Programs 145

2. if p < a, then (12) has the form

ord(c(p insert(a, q))) = 1 (14)

Since, by assumption,

ord(cd) = ord(c(pq)) = 1

then c ≤ p, and therefore (14) can be rewritten as

ord(p insert(a, q)) = 1 (15)

If p < a, then

insert(a, d) = insert(a, pq) = p insert(a, q)

therefore (15) can be rewritten as

ord(insert(a, d)) = 1 (16)

(16) follows by the induction hypothesis for the Lemma (i.e., from the

implication (9), where z
def
= d) from the equality

ord(d) = 1

which is justified by the chain of equalities

1 = ord(cd) = ord(c(pq)) = (since c ≤ p)
= ord(pq) = ord(d).

From the above example we can see that even for the simplest FP, which
consists of several lines, a proof of its correctness is not trivial mathematical
reasoning, it is difficult to check it and much more difficult to construct it.

Below we present a radically different method for verification of FPs based
on a construction of state diagrams for FPs, and illustrate it by a proof of (5)
on the base of this method. This proof can be generated automatically, that is
an evidence of advantages of the method for verification of FPs based on state
diagrams.

4 State diagrams of functional programs

4.1 Concepts and notations related to terms

The following notations and concepts will be used below.

– E is a set of all terms.
– E0 is a set of all terms not containing functional variables.
– Econc is a set of terms e ∈ E0, such that each FS occurring in e is conc.

146 Andrew Mironov

– If Σ is a FP, then EΣ is a set of terms, each of which is either a variable or
has the form ϕ(u1, . . . , un), where ϕ ∈ ΦΣ and u1, . . . , un ∈ Econc.

– If e ∈ E , x1, . . . , xn is a list of the different variables, and e1, . . . , en are terms
such that ∀ i = 1, . . . , n type(ei) = type(xi), then the notation

e(e1/x1, . . . , en/xn) (17)

denotes a term derived from e by replacement ∀ i ∈ {1, . . . , n} of all occur-
rences of xi in e with the term ei.

– If e and e′ are terms, then for each term e′′, such that type(e′′) = type(e′),
the notation e(e′′/e′) denotes a term derived from e by a replacement of all
occurrences of e′ in e with the term e′′.

– An assignment is a notation of the form

u := e (18)

where u ∈ Econc, e ∈ EΣ , type(u) = type(e).
– If X ⊆ X , then an evaluation of variables occurring in X is a function ξ,

which maps each variable x ∈ X to a value xξ ∈ Dtype(x). The set of all
evaluations of variables occurring in X will be denoted by X•.

– For each e ∈ E0, each X ⊇ Xe and each ξ ∈ X• the notation eξ denotes an
object called a value of e on ξ and defined by a standard way (i.e. if e ∈ C,
then eξ is equal to the value of the constant e, if e ∈ X , then eξ is equal to
the value of the evaluation ξ on the variable e, and if e = f(e1, . . . , en), then

eξ = f(eξ1, . . . , e
ξ
n)).

– We shall consider terms e1, e2 ∈ E0 as equal iff for each ξ ∈ (Xe1 ∪Xe2)• the

equality eξ1 = eξ2 holds. We understand this equality in the following sense:

values eξ1 and eξ2 either both undefined, or both defined and coincide.
– A term e ∈ E0 is called a formula, if all variables from Xe are of the type

C, and ∀ ξ ∈ X•e eξ ∈ {0, 1}. The symbol B denotes the set of all formulas.
The symbols > and ⊥ denote formulas taking the values 1 and 0 respectively
on each evaluation of their variables.

4.2 A concept of a state of a FP

Let Σ be a FP.
A state of Σ is a notation s of the form

[[b]]u (θ1, . . . , θm) (19)

components of which are the following:

– b is a formula from B, called a condition of s,
– u is a term from Econc, called a term related to s, and
– θ1, . . . , θm are assignments.

We shall use the following notations.

On a Method of Verification of Functional Programs 147

– SΣ is the set of all states of Σ.
– If a state s ∈ SΣ is of the form (19), then we shall denote by bs, us, Θs

and type(s) a formula b, a term u, a sequence of assignments (which can be
empty) in (19), and a type type(u), respectively.
If bs = >, then the formula b in (19) will be omitted.

– If s ∈ SΣ , then

• Xs is a set of all data variables occurring in s,
• each variable from Xs, occurring in the left side of an assignment from
Θs, is called an internal variable of s, all other variables from Xs are
called input variables of s,
• s• is a set of all ξ ∈ X•s , such that bξs = 1, and ∀ (ui := ei) ∈ Θs
∗ if ei ∈ Econc, then uξi = eξi , and
∗ if ei = ϕ(v1, . . . , vn), then

uξi = fϕ(vξ1, . . . , v
ξ
n),

where fϕ is a corresponding component of a LFP of Σ.

A state s ∈ SΣ is said to be terminal, if Θs does not contain functional
variables.

Given a pair of states s1, s2 ∈ SΣ . We denote by the notation s1 ⊆ s2 the
following statement: sets of input variables s1 and s2 are equal, and

∀ ξ1 ∈ s•1 ∃ ξ2 ∈ s•2 : uξ1s1 = uξ2s2 .

Along with the states of FPs, we shall consider also pseudo-states, which
differ from states only that their assignments have the form u := e, where u ∈
Econc, e ∈ E . For each pseudo-state s the notations bs, us and Θs have the same
meaning as for states.

4.3 Unfoldinig of states

Let Σ be a FP, s ∈ SΣ be a state, θ ∈ Θs be an assignment of the form

u := ϕ(v1, . . . , vn)

and an equation in Σ that corresponds to ϕ has the form ϕ(x1, . . . , xn) = eϕ.
Denote by sθ a set, called an unfolding of the state s with respect to θ, and

defined by the procedure of its construction, which consists of the steps listed
below.

Step 1.
sθ is assumed to be a singleton, which consists of a pseudo-state, derived
from s by a replacement of θ with the assignment

u := eϕ(v1/x1, . . . , vn/xn).

148 Andrew Mironov

Step 2.
(This step can be performed several times until there is the possibility to
perform it.)
If all the elements of the set sθ are states from SΣ , then the performance of
this step ends, otherwise sθ is modified in the following way.
We choose an arbitrary element s′ ∈ sθ, which is not a state of SΣ , and
denote by θ′ the first of the assignments, occurring in Θs′ , which has the form
u := e, where e 6∈ EΣ . Consider all possible variants of the form of the term
e, and for each of these variants, we present a rule of a modification of the set
sθ, according to this variant. Below, the phrase “a new variable” means “a
variable that has no occurrences in the pseudo-state under consideration”.

– e ∈ C, in this case
• if u = e, then remove θ′ from s′,
• if u ∈ X , then replace all occurrences of u in s′ on e, and remove θ′

from s′,
• otherwise remove s′ from sθ.

– e = e′h, in this case replace θ′ on the assignment
• u := e1, if e′ has the form e1e2,
• ux := e′, where x is a new variable, otherwise.

– e = e′t, in this case replace θ′ on the assignment
• u := e2, if e′ has the form e1e2,
• xu := e′, where x is a new variable, otherwise.

– e = e1e2, in this case
• if u = u1u2, then replace θ′ on a couple of assignments u1 := e1,
u2 := e2,

• if u ∈ X , then replace all occurrences of u in s′ on the term xy (where
x and y are new variables), and θ′ on the couple of assignments
x := e1, y := e2,

• otherwise remove s′ from sθ.
– e = [[e1 = ε]], in this case
• add to sθ a copy of the state s′ (denote it by s′′),
• replace
∗ θ′ in s′ on the couple u := 1, ε := e1, and
∗ θ′ in s′′ on the couple u := 0, xy := e1, where x and y are new

variables.
– e = [[e1 = e2]], e = [[e1 ≤ e2]], e = [[e1 ∧ e2]] etc., in this case
• replace θ′ on the couple x1 := e1, x2 := e2, where x1, x2 are new

variables, and
• add to bs′ the conjunctive member u = e′, where e′ is derived from
e by a replacement of ei with xi (i = 1, 2).

– e = [[e1]] e2 : e3, in this case add to sθ a copy of s′ (denote it by s′′), and
replace all occurrences
• θ′ in s′ on the couple 1 := e1, u := e2,
• θ′ in s′′ on the couple 0 := e1, u := e3.

– e = ϕ(e1, . . . , ek), ∃ i : ei 6∈ Econc, in this case, replace ei in θ′ on the new
variable x, and add x := ei before θ′.

On a Method of Verification of Functional Programs 149

Step 3.
For each s′ ∈ sθ
– if Θs′ has a pair of the form u := x, v := x, where x ∈ X , and u, v

are of the form u1 . . . un, v1 . . . vm respectively, then there is executed an
algorithm which consists of the following steps:
(as a result of each of the these steps it is changed a form of these
assignments, but we will denote the changed assignments by the same
notation as original assignments):

• if n < m, then in the case un ∈ X each occurrence of the variable
un in s′ is replaced on the term vn . . . vm, and in the case un = ε we
remove s′ from sθ,

• analogously in the case m < n,
• ∀ i = 1, . . . , n:
∗ if ui ∈ X , then replace all occurrences ui in s′ on vi, and if
ui 6∈ X , but vi ∈ X , then replace all occurrences vi in s′ on ui,
∗ if ui 6= vi, then remove s′ from sθ,

• delete one of the considered assignments,

– if bs′ = [[b′, x = u]], where x ∈ X , u ∈ X ∪ C, then bs′ is replaced on b′,
and all occurrences x in s′ are replaced on u,

– bs′ is simplified by
• a replacement of subterms without variables with corresponding con-

stants, and
• simplifying transformations related to boolean identities and prop-

erties of equality and linear order relations,
– if bs′ = ⊥, then s′ is removed from sθ.

Theorem 1.
The above procedure for constructing of the set Sθ is always terminated.

A state s ∈ SΣ is inconsistent, if it is not terminal, and ∃ θ ∈ Θs: either
sθ = ∅, or all states in sθ are inconsistent.

4.4 Substitution of states in terms

Let Σ be a FP, e be a term, x1, . . . , xn be a list of different variables from X ,
and s1, . . . , sn be a list of states from SΣ , such that ∀ i = 1, . . . , n type(si) =
type(xi). The notation

e(s1/x1, . . . , sn/xn) (20)

denotes a state se ∈ SΣ , defined by induction on the structure of e:

– if e = xi ∈ {x1, . . . , xn}, then se
def
= si,

– if e ∈ X \ {x1, . . . , xn} or e ∈ C, then se
def
= e (),

– if e = g(e1, . . . , ek), where g ∈ F ∪ Φ, and the states se1 , . . . , sek of the form
(20), which are corresponded to terms e1, . . . , ek, are already defined, then
se is defined as follows:

150 Andrew Mironov

• internal variables of the states sei are replaced on new variables by a
standard way, so that all the internal variables of these states will be
different, let [[bi]]ui(Θi) (i = 1, . . . , k), be the resulting states,
• se is a result of an application of actions 2 and 3 from section (4.3) to

the state
[[b1, . . . , bk]] (u1, . . . , uk) (Θ1, . . . , Θk).

Term (20) will be denoted by the notation e(s1, . . . , sn), in that case, when
the list of the variables x1, . . . , xn is clear from the context.

4.5 A concept of a state diagram of a FP

Let Σ be a FP, and left side of first equation in Σ has the form ϕ(x1, . . . , xn).
A state diagram (SD) of the FP Σ is a graph G with distinguished node

n0 (called an initial node) satisfying the following conditions.

– Each node n of the graph G is labelled by a state sn ∈ SΣ , and sn0
has the

form
y (y := ϕ(x1, . . . , xn)), where y 6∈ {x1, . . . , xn}.

– For each node n of the graph G one of the following statements holds.
1. There is no an edge outgoing from n, and sn is terminal.
2. There are two edges outgoing from n, and states s′, s′′ corresponding

to the ends of these edges have the following property: ∃x ∈ Xsn :
type(x) = S, there are no assignments of the form u := x in Θsn , and
s′, s′′ are obtained from sn by
• a replacement of all occurrences of x with the constant ε and with

the term yz respectively (where y and z are variables not occurring
in Xsn), and

• if x is not occurring in the left side of any assignment from Θsn ,
then – by adding assignments ε := x and yz := x to Θs′ and Θs′′

respectively.
3. ∃ θ ∈ Θsn : a set of states corresponding to ends of edges outgoing from
n, is equal to the set of all consistent states from sθn.

4. usn has the form u1u2, and there is one edge outgoing from n labeled by
tail, and the end n′ of this edge satisfies the condition: tail(sn) ⊆ sn′ .

5. There is an edge outgoing from n labelled by <, the end n′ of which
satisfies the condition:
• ∃n1, n2: G contains an edge from n1 to n2 labelled by tail, and
• ∃ e ∈ EΣ , ∃x ∈ Xe :

sn ⊆ e(tail(s1)/x), e(s2/x) ⊆ sn′ .

We describe an informal sense of the concept of a SD. Each state s can be
considered as a description of a process of a calculation of the value of the term us
on concrete values of input variables of this state (by an execution of assignments
from Θs, checking the condition bs and a calculation of the value of the term

On a Method of Verification of Functional Programs 151

us on the calculated values of the variables occurring in this term). If all edges
outgoing from the state n are unlabeled, then ends of these edges correspond to
possible options for calculating the value of usn (by detailization of a structure
of a value of some variable from Xsn , or by an equivalent transformation of any
assignment from Θsn). If there is an edge from n to n′ labeled by tail, then this
edge expresses a reduction of the problem of calculating of the tail of the value
usn to the problem of calculating the value of usn′ . If there is an edge from n to n′

labeled by <, then this edge expresses a reduction of the problem of calculating
the value usn to the problem of calculating the value usn′ on arguments on the
smaller size.

We say that FP Σ has a finite SD, if there is a SD of Σ with finite set of
nodes.

Theorem 2.
Let Σ1 and Σ2 have finite SDs, ΦΣ1

∩ΦΣ2
= ∅, and left sides of first equations

in Σ1 and Σ2 have the form ϕ1(x1, . . . , xn) and ϕ2(y1, . . . , ym) respectively,
where type(Σ1) = type(y1).

Then FP Σ such that

– its first equation has the form

ϕ(x1, . . . , xn, y2, . . . , ym) =
= ϕ2(ϕ1(x1, . . . , xn), y2, . . . , ym)

– and a set of other equations is Σ1 ∪Σ2

has a finite SD.

We do not give a description of the algorithm for the construction of a finite
SD for Σ due to limitations on the size of the article. We note only that the SD
is a union of a SD for Σ1, a SD for Σ2, and a SD, which is a Cartesian product
of two previous SDs.

Theorem 3.
Let FP Σ has a finite SD, where terms, related to states corresponding to

terminal nodes of this SD, which are reachable from an initial state, are equal
to 1. Then fΣ has value 1 on all its arguments.

The above theorems are theoretical foundation of a method of verification of
FPs. This method consists in a constructing finite SDs

– for a FP Σ1 under verification, and
– for a FP Σ2 which represents some property of Σ1.

If there are finite SDs for Σ1 and Σ2, then, according to Theorem 2, there is a
finite SD for a superposition of Σ1 and Σ2. If this SD has the property indicated
in Theorem 3, then the superposition of functions corresponding to Σ1 and Σ2,
has the value 1 on all its arguments.

152 Andrew Mironov

In the next section we present an example of this method.
For a constructing of SDs it is used a method of justification of statements

of the form s1 ⊆ s2, which we did not set out here due to limitations on the size
of the article. We only note that this method uses the concept of an unification
of terms.

We shall use the following convention for graphical presentation of SDs: if a
state s associated with a node of a SD has the form [[b]]u(θ1, . . . , θn), then this
node is designated by an oval, over which it is drawn a notation b.u (or u, if
b = >), and components of the list Θs are depicted inside the oval. An identifier
of the node can be depicted from the left of the oval.

5 An example of verification of a FP by constructing of a
state diagram

In this section we illustrate the verification method outlined above by an example
of verification of FP of sorting, in this case Σ1 = (3) and Σ2 = (4).

We shall use the following convention: if nodes n1 and n2 of a SD are such
that n2 can be derived from n1 by a performing of actions 2 and 3 from the
definition of a SD, then we draw an unlabeled edge from n1 to n2 (i.e. unlabeled
edges in a new understanding of a SD correspond to paths consisting of unlabeled
edges in original understanding of a SD).

5.1 A state diagram for the FP of sorting

In this section we describe the process of building of a SD for FP (3). Terms of
the form insert(a, y) we denote by a→ y.

An initial node of the SD for FP (3) (this node will be denoted by the symbol
A) has the form

y�� ��
�
�

�
�y := sort(x)

A

Two unlabeled edges can be drawn (corresponding to replacement of x with
ε and with ab, and to an unfolding of one assignment) from this node to the
nodes �

�
�
�

�
�
�
�ε := x

ε
B

'
&

$
%

y := a→ u
u := sort(b)
ab := x

y

D

Also it is possible to draw two unlabeled edges (corresponding to replacement
of the variable u with constant ε and with the term cd) from D to nodes with
labels

y (y := a→ cd, cd := sort(b), ab := x), (21)

and
y (y := aε, ε := sort(b), ab := x). (22)

On a Method of Verification of Functional Programs 153

Also it is possible to draw two edges from the node labeled by (21) to nodes
labeled by

C : [[a ≤ c]] acd (cd := sort(b), ab := x),
G : [[c < a]] cz (z := a→ d, cd := sort(b), ab := x)

(by an unfolding of the first assignment).
It is possible to draw an edge labeled by tail from C to the initial node (the

existence of such an edge is seen directly).
It is possible to draw two edges from the node labeled by (22) (replacing b

to ε and to pq) to nodes, one of which is terminal and has the form

E : aε (aε := x),

and the second node is inconsistent (that can be determined by additional un-
foldings, which we do not present here).

It is possible to draw two unlabeled edges from G (corresponding to the
replacement of b with ε and with pq) to nodes, one of which is inconsistent, and
the second node is labeled by

[[c < a]] cz

z := a→ d,
cd := p→ w,
w := sort(q),
apq := x

 . (23)

It is possible to draw two unlabeled edges from (23) (corresponding to the re-
placement of w with ε and ij):

– from the end of the first of these edges it can be drawn several unlabeled
edges, but among ends of all these edges there is a unique consistent node
labeled by

[[c < a]] cz

z := a→ ε,
c := p,
d := ε,
apε := x

 ,

and there is a unique unlabeled edge from this node to a terminal node

H : [[c < a]] caε (acε := x),

– the end of second edge has a label

[[c < a]] cz

z := a→ d,
cd := p→ ij,
ij := sort(q),
apq := x

 . (24)

It can be drawn a couple of edges from (24), the ends of which have labels

F : [[c < a, c ≤ i]] cz

 z := a→ ij,
ij := sort(q),
acq := x

 ,

154 Andrew Mironov

I : [[c < a, c < p]] cz

z := a→ d,
d := p→ j,
cj := sort(q),
apq := x

 .

It can be drawn an edge labeled by tail from F to the initial node (the
existence of such an edge is seen directly).

A pair of nodes (D, I) is related to the pair of nodes (A,G) by the following
relations:

tail(I) = e(tail(G)/h), D = e(A/h) (25)

where e = a → h. In other words, labels of nodes I,D can be obtained from
labels of nodes G,A by adding an assignment to the top. This fact can be used
to justify an existence of an edge from G to A with label tail. We do not set
out the detailed justification of an existence of such an edge, we describe only a
scheme of such a justification. Let ρ(x) be a partial function with the following
property: if ρ is defined on a value α of the variable x, then it maps α to a string
β, which has the property

ux 7→αtail(G) = ux 7→βA .

The formula (25) directly implies the following property of the function ρ:

x 6= ε ⇒ ρ(x) w xhρ(xt) (26)

where the inequality w is understood as an order relation on the set of partial
functions: if for some value of the variable x the right side of (26) is defined,
then the left side also is defined for this value of x, and values of both parts are
the same.

A property of totality of the function ρ is justified by the inequality (26)
and by an analysis of a fragment of SD for (3) which is already built. Note that
this justification can be generated automatically. A proof of correctness of this
justification is based on the concept of unification of state pairs, it has a large
volume, and we omit it.

The constructed SD for FP (3) is shown in Fig. 1. it can be simplified to the
SD in Fig. 2 (we do not present here the detailed algorithm of this simplification).

5.2 A state diagram for the FP of cheking of string ordering

A fragment of a SD for FP Σ2 (see (4)) (consisting of nodes reachable from the
initial state) has the form

On a Method of Verification of Functional Programs 155

a b

c d

e f g

s�
�

�
�

�� ��s := ord(y)

s�
�

�
�s := ord(cz)

cz := y

1�� ��ε := y

1�� ��cε := y

s'
&

$
%

s := ord(cvw)
cvw := y

�� ��cvw := y

'
&

$
%

s := ord(vw)
cvw := y

?

?

�

[[c ≤ v]] s

-

[[v < c]] 0

-

--

<

5.3 A state diagram for a superposition of the sorting FP and the
FP of ordering checking

There is an algorithm based on Theorem 3, which can be applied to SDs for the
FPs (3) and (4), which results the SD shown in Fig. 3. This SD has two terminal
nodes, and labels of both these nodes have a value of 1. According to Theorem
3, this implies that the function ord ◦ sort has the value 1 on all its arguments.

In conclusion we note, that despite on the complexity of all of the above
transformations and reasonings, all of them can be generated automatically. An
attempt to justify an existence of edges with labels tail and < can be executed
automatically for each pair of nodes arising in the process of building of the SD.
It can be seen from this example that the process of a construction of a SD is
terminated fast enough.

6 Conclusion

We have proposed the concept of a state diagram (SD) for functional programs
(FPs) and a verification method based on the concept of a SD. One of the
problems for further research related to the concept of a SD has the following
form: find a sufficient condition ϕ (as strong as possible) on a FP Σ such that
if Σ meets ϕ then Σ has a finite SD.

References

1. R.W. Floyd: Assigning meanings to programs. In J.T. Schwartz, editor, Proceed-
ings Symposium in Applied Mathematics, Mathematical Aspects of Computer Sci-
ence, pages 19-32. AMS, 1967.

156 Andrew Mironov

2. C. A. R. Hoare: An axiomatic basis for computer programming. Communications
of the ACM, 12(10): 576580, 583, October 1969.

3. R. Milner: A Calculus of Communicating Systems. Number 92 in Lecture Notes in
Computer Science. Springer Verlag, 1980.

4. R. Milner: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

5. Hoare, C. A. R.: Communicating sequential processes. Communications of the
ACM 21 (8): 666677, 1978.

6. Separation Logic: A Logic for Shared Mutable Data Structures. John C. Reynolds.
LICS 2002.

7. Clarke, E.M., Grumberg, O., and Peled, D.: Model Checking. MIT Press, 1999.
8. J.A. Bergstra, A. Ponse, and S.A. Smolka, editors: Handbook of Process Algebra.

North-Holland, Amsterdam, 2001.
9. C.A. Petri: Introduction to general net theory. In W. Brauer, editor, Proc. Ad-

vanced Course on General Net Theory, Processes and Systems, number 84 in LNCS,
Springer Verlag, 1980.

10. Z. Manna: Mathematical Theory of Computation. McGraw-Hill Series in Computer
Science,1974.

11. N. D. Jones and N. Andersen. Flow analysis of lazy higher-order functional pro-
grams. Theoretical Computer Science, 375:120136, 2007.

12. Ranjit Jhala, Rupak Majumdar, Andrey Rybalchenko: HMC: Verifying Functional
Programs Using Abstract Interpreters, http://arxiv.org/abs/1004.2884

13. N. Kobayashi and C.-H. L. Ong. A type theory equivalent to the modal mu- calculus
model checking of higher-order recursion schemes. In Proceedings of LICS 2009.
IEEE Computer Society, 2009.

14. C.-H. L. Ong. On model- checking trees generated by higher order recursion
schemes. In Proceedings 21st Annual IEEE Symposium on Logic in Computer
Science, Seattle, pages 8190. Computer Society Press, 2006.

15. N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multiparameter tree trans-
ducers and recursion schemes for program verification. In POPL, pages 495508,
2010.

On a Method of Verification of Functional Programs 157

Fig. 1:

�� ��
�
�

�
�y := sort(x)

ε�
�
�
�ε := x

'
&

$
%

y := a→ u
u := sort(b)
ab := x

y

y

aε�
�
�
�aε := x

'

&

$

%
z := a→ d
cd := sort(b)
ab := x

tail

tail

tail

tail

[[a ≤ c]] acd

[[c < a]] cz

'

&

$

%
z := a→ d
d := p→ j
cj := sort(q)
apq := x

'

&

$

%
z := a→ ij
ij := sort(q)
acq := x

'
&
$
%

cd := sort(b)
ab := x

[[c < a]] caε�
�
�
�acε := x

?

?

-

-

-

?

H
HH

H
HY
��

��
��*

HH
HH

HY

��
�
��*

@
@

@@I

�
�
�@

@
@
@I

�
�
�

A B

C

D E

G

F

I

H

[[c < a, c ≤ i]] cz

[[c < a, c < p]] cz

Fig. 2:

�� ��
�
�

�
�y := sort(x)

ε�
�
�
�ε := x

'
&

$
%

y := a→ u
u := sort(b)
ab := x

y

y

aε�
�
�
�aε := x

'
&

$
%

z := a→ d
cd := sort(b)
ab := x

tail

tail

[[a ≤ c]] acd

[[c < a]] cz

'
&
$
%

cd := sort(b)
ab := x ?

?

-

-HH
H
HHY

��
��

��*

@
@

@@I

�
�
�

A B

C

D E

G

158 Andrew Mironov

Fig. 3:

Aa BaCe

Gc Da
Ec

Gf Ge

1'
&
$
%. . .

1'
&
$
%. . .-

'
&

$
%

'
&

$
%

s := ord(y)
y := sort(x)

?'

&

$

%
s := ord(y)
y := a→ u
u := sort(b)
ab := x

@
@

@
@

@I

�

?

--

'

&

$

%
s := ord(cz)
z := a→ d
cd := sort(b)
ab := x

'

&

$

%
s := ord(vw)
vw := a→ d
cd := sort(b)
ab := x

-

'

&

$

%
s := ord(cvw)
vw := a→ d
cd := sort(b)
ab := x

'
&
$
%

s := ord(cd)
cd := sort(b)
ab := x

[[a ≤ c]] s

[[c < a, c ≤ v]] s[[c < a]] s

[[c < a]] s s

s

@
@

@@I

�
�
�

<

<

	Introduction
	Main concepts
	Terms
	A concept of a functional program over strings

	Example of specification and verification of a FP
	Example of a FP
	Example of a specification of a FP
	Example of a verification of a FP

	State diagrams of functional programs
	Concepts and notations related to terms
	A concept of a state of a FP
	Unfoldinig of states
	Substitution of states in terms
	A concept of a state diagram of a FP

	An example of verification of a FP by constructing of a state diagram
	A state diagram for the FP of sorting
	A state diagram for the FP of cheking of string ordering
	A state diagram for a superposition of the sorting FP and the FP of ordering checking

	Conclusion

