
Complexity of Turchin’s Relation for Call-by-Name
Computations

Antonina N. Nepeivoda1

1Program Systems Institute
Russian Academy of Sciences

Fifth International Valentin Turchin Workshop on Metacomputation
Pereslavl–Zalessky, 2016

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 1 / 37

Introduction Historical Review

“Similarity” conditions for termination

N. Dershowitz on term-rewriting systems
(approx. 1982):

wqos (and the homeomorphic embedding E)
for ensuring termination.

Wqos are considered as termination criteria for term rewriting systems:

work with a uniform alphabet⇒ do not distinguish between
constructor and function names.
are required to work with every rewriting order⇒ are not specified
to any computation order;

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 2 / 37

Introduction Historical Review

Seminal Work of V. Turchin

(published in 1988):

The first algorithm of generalization
strategy and whistle
combined in single relation �.

The relation specialized for comparing call-stack structures:

considers only function calls’ names;
takes the semantics into account.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 3 / 37

Turchin’s relation Informal introduction

Relation for Stacks

A call stack⇒ a linear structure⇒ can be considered as a word.

Top Context

. . . Context

. Context

Top′ Middle Context

Features:

Considers not only configuration data but also the history of the changes
in the data (as in e.g. [Gallagher et al, 1996]).

Helps to generalize w.r.t. the computation order.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 4 / 37

Turchin’s relation Informal introduction

Example

Computation Path Stack Configuration

(0) f(x+1+1)
(1) f(g(x+1+1))+1
(2) f(h(x+1))+1
(3) f(g(x)+1)+1
(4) f(g(g(x)+1))+1+1
(5) f(h(g(x)))+1+1

f 0(arg1)

arg1 = g1(arg2); f 1(arg1)

arg1 = h2(arg2); f 1(arg1)

f 1(arg1)

arg1 = g4(arg2); f 4(arg1)

arg2 = g5(arg3); arg1 = h5(arg2); f 4(arg1)

The pairs of the similarly colored con-
figurations are in Turchin’s relation.

(1) and (5) are not in Turchin’s relation
(the time index of the call f is changed).

f (x) computes [log2(x)] + 1:
f(0)=0;
f(x+1)=f(g(x+1))+1;

g(0)=0;
g(x+1)=h(x);

h(0)=0;
h(x+1)=g(x)+1;

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 5 / 37

Turchin’s relation Examples

How it works

f (x) computes [log2(x)] + 1:

Initial Program

f(0)=0;
f(x+1)=f(g(x+1))+1;

g(0)=0;
g(x+1)=h(x);

h(0)=0;
h(x+1)=g(x)+1;

Residual Program

f(0)=0;
f(1)=1;
f(2)=1;
f(x+1+1+1)=f(g(x)+1);

g(0)=0;
g(1)=0;
g(x+1+1)=g(x)+1;

The residual program above is a result of supercompilation using the
composition of E and �. Every relation used alone gives a less
efficient result.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 6 / 37

Turchin’s relation Examples

How it works-2

s(x) computes
∑x

k=1 k2:

Initial Program

s(0)=0;
s(x+1)=a(m(x+1,x+1),s(x));

a(0,y)=y;
a(x+1,y)=a(x,y)+1;

m(0,y)=0;
m(x+1,y)=a(y,m(x,y));

Residual Program

s(x)=f(x,x,x);

f(0,0,0)=0;
f(0,0,x+1)=f(x,x,x)+1;
f(0,x+1,y)=f(y,x,y)+1;
f(x+1,y,z)=f(x,y,z)+1;

The residual program above is a result of supercompilation using the
composition of E and �. Again the both of them, used alone, are less
efficient.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 7 / 37

Turchin’s relation Examples

Why does semantics matter?

[L. Puel, 1985] The problem with the homeomorphic embedding: definitions
LHS = RHS where LHS E RHS.

May be a rule that always leads to an infinite loop, e.g.:

f(x+1)=f(g(x)+1);

May terminate, e.g.:

f(x+1)=f(g(x+1));
g(x+1)=0;

May result in an infinite loop or terminate depending on the semantics, e.g.:

f(x+1)=h(f(g(x)+1)+1);
h(x+1)=0;

No relations given in [Leuschel, 2002] or [Mogensen, 2013] can distinguish
between these cases.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 8 / 37

Turchin’s relation Examples

How does Turchin’s relation work?

Advantages:

Depends on the computation order; thus, takes the semantics into
account (STACK).
Depends on the global properties of the process tree, not only
properties of the term considered (HISTORY).

Problems:

STACK — badly formalized behaviour.
HISTORY — space-consuming.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 9 / 37

Turchin’s relation Formalization

Call-by-Value Semantics

In call-by-value semantics, every call stack configuration can be
considered as a linear structure with a finite prefix rewriting.

Program

f(0)=0;
f(x+1)=f(g(x+1))+1;

g(0)=0;
g(x+1)=h(x);

h(0)=0;
h(x+1)=g(x)+1;

Prefix Rewriting Rule

f → Λ
f → gf

g → Λ
g → h

h→ Λ
h→ g

Call stack transformations can be described by prefix grammars
(equivalent to finite automata). Turchin’s theorem is easily proved
[AN,2014].

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 10 / 37

Turchin’s relation Formalization

Call-by-Name Semantics

In call-by-name semantics, every call stack configuration is linear. But
its transformations depend on the passive part of the configuration.

Computation Path Stack Configuration

f(g(g(x))+1+1)

f(g(g(g(x))+1+1))+1

f(h(g(g(x))+1))+1

f(g(g(g(x)))+1)+1

f(g(g(g(g(x))+1))+1+1

f(h(g(g(g(x)))))+1+1

f (arg1)

arg1 = g(arg2); f (arg1)

arg1 = h(arg2); f (arg1)

f (arg1)

arg1 = g(arg2); f (arg1)

arg4 = g(arg5); arg3 = g(arg4);

arg2 = g(arg3); arg1 = h(arg2); f (arg1)

The red part of the last call stack is popped from the passive configuration.
Observing only the active stack, we cannot predict how it is changed by an
execution of the rule g(x+1) = h(x);

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 11 / 37

Turchin’s relation Formalization

Structure of the Passive Part of Configuration

Given the configuration b(d(x)+1,b(d(x),d(y))+1), we apply
b(x+1,y+1) = b(d(b(x,y+1)),y) to it.

The initial configuration has the following structure

s0 : b(z1 + 1,z2 + 1)
z1

uu

z2

**
s01 : d(x) s02 : b(z3,z4)

z3

tt
z4

��
s021 : d(x) s022 : d(y)

The colored call is placed to the current call stack.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 12 / 37

Turchin’s relation Formalization

Structure of the Passive Part of Configuration

Given the configuration b(d(x)+1,b(d(x),d(y))+1), we apply
b(x+1,y+1) = b(d(b(x,y+1)),y) to it.

After the application, the function call tree becomes as follows

s0 : b(z1, z2)
z1

tt
z2

))
s01 : z5 = b(z6, z7 + 1);d(z5)

z6 ��
z7

**

s02 : b(z3, z4)

z3 ��
z4

((
s011 : d(x) s012 : b(z8, z9)

z8 ��
z9

))

s021 : d(x) s022 : d(y)

s0121 : d(x) s0122 : d(y)

The colored calls are placed to the current call stack.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 13 / 37

Turchin’s relation Formalization

A Problem of Formalization

The main interest is not what data can be computed by a given
program but what stack configurations can appear along a
computation path of the given program.

Turchin’s relation considers every stack as a word and ignores static
data.

The Problem

Given a program, what class of grammars can generate words that
correspond to call stack configurations generated by the program?

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 14 / 37

Turchin’s relation Formalization

Constructing a Model of the Call Stack Configuration

The function call configuration forms a tree of calls, and the active call
stack is a path in the tree of calls.

Every call in the stack is modelled by the pair <NAME, LABEL>. The set
of all labels S has partial order /. The set of all names is Υ.

Every configuration is represented as a layered word Γ$∆. The structure
of the active stack Γ is linearly ordered w.r.t. labels, and the invisible part
∆ contains data about the passive part of the tree of the function calls.

Definition

For every layered word Γ$∆, where Γ and ∆ are words over Υ× S, we call Γ
the visible layer, and we call ∆ the invisible layer of Γ$∆.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 15 / 37

Turchin’s relation Formalization

Constructing a Model of the Call Stack Configuration

Example

Given configuration f(g(h(g(g(x)))+1))+1, the layered word
modelling its call stack can be

〈g, s1〉〈f , s0〉$〈ggh, s2〉

s0 / s1 / s2.

The three calls in the passive part are given the same label s2,
because they must be popped from the passive part only together.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 16 / 37

Turchin’s relation Formalization

Constructing a Model of the Call Stack Configuration

(Visible) transformations of the active part of the call stack are:

Erasure of the call on the stack top (when the call is computed
and is deleted from the stack).
Pushing a bounded number of calls to the stack (as in the
call-by-value semantics).
Popping a new stack top from the passive part of the configuration.

These transformations change the visible part Γ of the layered word
Γ$∆. The invisible part ∆ is also changed by combinations of some
basic operators on the invisible layer.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 17 / 37

Basic operators of the passive part of the stack

Basic Layer Operator: Append

Given a fixed label si and its child sj ,

Appsj [Ψ](Φ) = Φ〈Ψ, sj〉

On tree representations, the appending operator appends some new
letters to an existing child of si .

. . .

��
si : Θi

yy %%
sl : Θl sj : Θj

=⇒

. . .

��
si : Θi

yy &&
sl : Θl sj : Θj Ψ

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 18 / 37

Basic operators of the passive part of the stack

Basic Layer Operator: Append

Program Data Layered Word

f(h(g(x)+1)) 〈h, s0〉〈f , s0〉$〈g, s1〉
↓ ↓

f(g(g(x))+1) 〈f , s0〉$〈g, s1〉〈g, s1〉 =
〈f , s0〉$ Apps1 [g](〈g, s1〉)

Program

f(0)=0;
f(x+1)=
f(g(x+1))+1;

g(0)=0;
g(x+1)=h(x);

h(0)=0;
h(x+1)=g(x)+1;

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 19 / 37

Basic operators of the passive part of the stack

Basic Layer Operator: Insert

Given a fixed label si and its child sj ,

Inssj [Ψ〈sk 〉](Φ) = Φ〈Ψ, sk 〉, where sk is a new label that is a child of si
and the parent of sj .

Differs from Appsj only by introduction of an unused child label sk ,
which marks Ψ.

On tree representations, the insert operator inserts a new node
between the nodes labelled by si and sj .

. . .

��
si : Θi

yy %%
sl : Θl sj : Θj

=⇒

. . .

��
si : Θi

xx &&
sl : Θl sk : Ψ

��
sj : Θj

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 20 / 37

Basic operators of the passive part of the stack

Basic Layer Operator: Insert

Program Data Layered Word

f(f(g(x)+1)) 〈f , s0〉〈f , s0〉$〈g, s1〉
↓ ↓

f(f(g(g(x)+1))+1) 〈f , s0〉$〈g, s1〉〈gf , s2〉 =
〈f , s0〉$ Inss1 [gf 〈s2〉](〈g, s1〉)

Program

f(0)=0;
f(x+1)=
f(g(x+1))+1;

g(0)=0;
g(x+1)=h(x);

h(0)=0;
h(x+1)=g(x)+1;

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 21 / 37

Basic operators of the passive part of the stack

Basic Layer Operator: Delete

Given a fixed label si and its child sj ,

Delsj (Φ) = Φ′, where Φ′ is the subsequence of Φ not containing letters
labelled by sj = child(si) or by descendants of sj .

On tree representations, Delsj deletes the subtree whose uppermost
node is labelled by sj .

. . .

��
si : Θi

yy ''
sl : Θl sj : Θj

��
sj+1 : Θj+1

=⇒

. . .

��
si : Θi

��
sl : Θl

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 22 / 37

Basic operators of the passive part of the stack

Basic Layer Operator: Delete

Program Data Layered Word

b(b(0, d(x)+1),d(x)) 〈b, s0〉〈b, s0〉$〈d , s01〉〈d , s02〉
↓ ↓

b(1,d(x)) 〈b, s0〉$〈d , s02〉 =
〈b, s0〉$ Dels01 (〈d , s01〉〈d , s02〉)

Program

b(0,y)=1;
b(x,0)=x;
b(x+1,y+1)=
b(d(b(x,y+1)),
y);

d(0)=0;
d(x+1)=
d(x)+1+1;

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 23 / 37

Basic operators of the passive part of the stack

Basic Layer Operator: Copy

Given a fixed label si and its child sj ,

Copysj (Φ) = ΦΦ′, where Φ′ repeats the subsequence of Φ labelled by
sj and its descendants, with the fresh labels.

On tree representations, Copysj makes a copy of the subtree whose
uppermost node is labelled by sj .

. . .

��
si : Θi

yy ''
sl : Θl sj : Θj

��
sj+1 : Θj+1

=⇒

. . .

��
si : Θi

ww �� ((
sl : Θl sj : Θj

��

sk : Θj

��
sj+1 : Θj+1 sk+1 : Θj+1

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 24 / 37

Basic operators of the passive part of the stack

Basic Layer Operator: Copy

Program Data Layered Word

b(x+1,d(y)+1) 〈b, s0〉$〈d , s01〉
↓ ↓

b(d(b(x,d(y)+1)),d(y)) 〈bdb, s0〉$〈d , s01〉〈d , s02〉 =
〈bdb, s0〉$ Copys01 (〈d , s01〉)

Program

b(0,y)=1;
b(x,0)=x;
b(x+1,y+1)=
b(d(b(x,y+1)),
y);

d(0)=0;
d(x+1)=
d(x)+1+1;

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 25 / 37

Basic operators of the passive part of the stack

Layer Functions: Summary

are allowed to modify only the children of the node si .
The following is forbidden!

si : Θi

xx ''
sl : Θl . . .

��
sj+k : Θj+k

=⇒
si : Θi

xx ((
sl : Θl . . .

��
sj+k : Θj+k Ψ

are allowed to increase a longest word fragment starting from si at
most by a constant.
The following is also forbidden!

si : Θi

yy %%
sl : Θl sj : Θj

=⇒
si : Θi

��
sj : Θj

��
sl : Θl

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 26 / 37

Multi-Layer Prefix Grammars Definitions

Formal Definition of Multi-Layer Prefix Grammars
A multi-layer prefix grammar — a tuple G = 〈Υ,S,R,Fx , Γ0$∆0〉, where:

Υ is an alphabet of names, S is a set of labels;

Γ0$∆0 is the initial word, Γ0 is linearly ordered w.r.t. labels;

Fx is a finite set of basic-layer-operator compositions (x runs over S);

R is a finite set of rewriting rules, which are either:

Simple rules:
Ξ〈a, si〉Θ$Ψ→ ΦΘ$F si (Ψ),

|Ξ| ≤ L, |Φ| ≤ K , all the letters of Φ have label si , F si ∈ Fsi .

Pop rules: for Ψ′ — a maximal subsequence of Ψ marked by some
sj = child(si) ∈ S,

Ξ〈a, si〉Θ$Ψ→ Ψ′ΦΘ$F si (Ψ),

|Ξ| ≤ L, |Φ| ≤ K , all the letters of Φ have label si , F si ∈ Fsi .

Alphabetic multi-layer prefix grammars: Ξ = Λ (L = 0).
Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 27 / 37

Turchin’s Relation for Multi-Layer Prefix Grammars Definitions

Turchin’s Relation for Multi-Layer Prefix Grammars

Definition
Given an alphabetic multi-layer grammar G, a common context for the
two words Γ1$∆1 and Γ2$∆2 in a trace generated by G is a maximal
common suffix Θ of Γ1 and Γ2 such that Θ[1] was preceded at least by
a one letter on the whole trace segment starting with Γ1$∆1 and
ending by Γ2$∆2.

This means that the common context was not changed!

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 28 / 37

Turchin’s Relation for Multi-Layer Prefix Grammars Features

Turchin’s Relation for Multi-Layer Prefix Grammars

Definition
Let G be a multi-layer prefix grammar. Given two layered words
Ξi = Γi$∆i , Ξj = Γj$∆j in a trace generated by G, we say that the
words form a Turchin pair (thus, Ξi � Ξj) if Γi = ΦΘ0, Γj = Φ′ΨΘ0, Φ is
equal to Φ′ as a plain word (up to the layer labels) and the suffix Θ0 is
the common context of Ξi and Ξj .

Theorem (Strong Turchin’s Theorem)
Every infinite trace generated by a multi-layer prefix grammar G
contains an infinite subsequence which is linearly ordered w.r.t.
Turchin’s relation.

Hence, every computation path modelled as such a trace contains an
infinite chain of call stack configurations w.r.t. �. That allows us to
combine � with usually used wqos.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 29 / 37

Turchin’s Relation for Multi-Layer Prefix Grammars Features

Complexity of Turchin’s relation

Given a multi-layer grammar G:

let rules of G increase a word along a longest path in the corresponding
labelled tree at most by K letters;

let the number of the different prefixes involved in the right-hand sides of
the rules be M;

let the total length of the initial word be N.

We define the following Ackermann function:
BK (M,0) = 1
BK (0,N) = N + 1
BK (M,N) = BK (M − 1,BK (M,N − 1) ∗ K)

Theorem
An alphabetic multi-layer grammar G can generate bad sequences w.r.t.
Turchin’s relation not longer than BK (M,N).

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 30 / 37

Turchin’s Relation for Multi-Layer Prefix Grammars Features

Proof Idea

Given the initial word Γ0, build the maximal
bad sequence using M − 1 prefixes and all
the letters of Γ0 without the last letter (seg-
ment σ1). Store the maximal longest path
∆k1 consisting of a remaining prefix to the
invisible layer.

Pop this path instead of Γ0[last] and pro-
ceed constructing the bad sequence using
M − 2 prefixes and ∆k1 as the initial word.

Repeat the construction until all the pre-
fixes are used in ∆ki .

Γ0$Λ

. . .

Γ0[last]$∆k1

σ1

∆k1$Λ

. . .

∆k1 [last]$∆k2

σ2

. . .

∆kn $Λ

. . .

Λ$∆kn+1

σn

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 31 / 37

Turchin’s Relation for Multi-Layer Prefix Grammars Discussion

Advantage or Disadvantage?

Turchin’s relation possibly produces very long and not useful
unfolding, which consumes time and can imply unreadable
residual programs.

Long bad sequences are practically rare. Usually — more useful
unfolding. For primitively recursive functions — no problem at all,
since they cannot express Ackermann functions.

The homeomorphic embedding can also admit bad sequences with a
hyper-ackermanian length even in the case all the terms are unary!
[Touzet, 2002].

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 32 / 37

Turchin’s Relation for Multi-Layer Prefix Grammars Discussion

Usual Example: Accurate Termination

Configuration f(g(x1) + 1)
is embedded in
f(g(g(x1) + 1)). But the
call stacks of the configura-
tions correspond to layered
words 〈f , s0〉$〈g, s1〉 and
〈gf , s0〉$〈g, s1〉 and do not
satisfy Turchin’s relation. It
is satisfied on the framed
configurations.

Process Tree for f(h(x))

f (h(x))
x=0

vv
x=x1+1

**
f (0)

��

f (g(x1) + 1)

��
0 f (g(g(x1) + 1)) + 1

��
f (h(g(x1))) + 1

x1=0

rr
x1=x2+1��

f (h(0)) + 1

��

f (h(h(x2))) + 1
x2=0

tt x2=x3+1��
f (0) + 1

��

f (h(0)) + 1

��

f (h(g(x3) + 1)) + 1

��1 f (0) + 1 . . .

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 33 / 37

Turchin’s Relation for Multi-Layer Prefix Grammars Discussion

Rare Example: Ackermanian Bad Sequence

A(< x + 1,y >) = a(A(< x,y >));
A(< 0,y >) = < y + 1,0 >;
a(< x + 1,y >) = x;
B(< x + 1,y >) = c(c(< x + 1,y >));
b(< x + 1,y >) = y;
c(< x + 1,y >) = < B(b(< x,y >)) + 1,c(c(< x,y >)) >;
c(< 0,y >) = < B(b(< 1,0 >)) + 1,c(c(< 0,0 >)) >;

The input point is A(< N,b(B(< 1,0 >)) >) (where N is an arbitrary
fixed natural number)

The program never stops.
The length of the computation path until a Turchin pair on its call

stack configurations appears is O(22...2
}

N
).

The length of the computation path until a pair of
homeomorphically embedded configurations appears is 5 + N.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 34 / 37

Conclusion

Conclusion

Turchin’s relation �:

a natural way to discover loops on computation paths with
accordance to the semantics;

a rather strong whistle that can deal with complex computations;

works with flat structures, hence cheap as a whistle (and we even
can omit time indices, it will still help a lot!).

Thus, � is more perspective as a whistle than e.g. the “Eulerian”
whistle considering term trees as words [Mogensen, 2013] because �
considers natural flat structure of the call-stack, not artificial one.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 35 / 37

Conclusion

Bibliography

J. Gallagher, L. Lavafe: Regular approximation of computation paths in
logic and functional languages, 1996.

M. Leuschel: Homeomorphic Embedding for Online Termination of
Symbolic Methods, 2002.

T. Mogensen: A Comparison of Well-Quasi Orders on Trees, 2013.

A. P. Nemytykh: The Supercompiler Scp4: General Structure, 2007.

A. Nepeivoda: Turchin’s Relation and Subsequence Relation in Loop
Approximation, 2014.

L. Puel: Using Unavoidable Set of Trees to Generalize Kruskal’s
Theorem, 1985.

H. Touzet: A Characterisation of Multiply Recursive Functions with
Higman’s Lemma, 2002.

V. F. Turchin: The algorithm of generalization in the supercompiler, 1988.

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 36 / 37

Thank You

Thank You

Antonina Nepeivoda Turchin’s Relation for CBN Computations META 2016 37 / 37

	Introduction
	Historical Review

	Turchin's relation
	Informal introduction
	Examples
	Formalization

	Basic operators of the passive part of the stack
	Multi-Layer Prefix Grammars
	Definitions

	Turchin's Relation for Multi-Layer Prefix Grammars
	Definitions
	Features
	Discussion

	Conclusion

