
Algorithm Design Patterns:
Programming Theory Perspective

(Extended Abstract)

Nikolay V. Shilov

A.P. Ershov Institute of Informatics Systems, Russian Academy of Sciences
Lavren’ev av. 6, 630090 Novosibirsk, Russia

shilov@iis.nsk.su

http://persons.iis.nsk.su/en/person/shilov

Abstract. Design and Analysis of Computer Algorithms is a must of
Computer Curricula. In particular it teaches algorithm design patterns
like greedy method, divide-and-conquer, dynamic programming, backtrack-
ing and branch-and-bound. Unfortunately, all listed design patterns are
taught, learned and comprehended by examples, while they can be for-
malized as design templates, rigorously specified, and mathematically
verified. Greedy method is the only pattern that had been studied from
rigour mathematical point of view in XX century. Later, the author pub-
lished (in years 2010-2012 in separate papers) formalization, specification
and verification for three more patterns, namely dynamic programming,
backtracking and branch-and-bound. In the present extended abstract
these studies are summarized and discussed from programming theory
perspective using concepts and techniques used in Abstract Data Types,
Theory of Program Schemata, Partial and Total Correctness, program
specialization.

To commemorate 85 anniversary of A.P. Ershov (1931-1988),

a Scientist that drew my interest to Theory of Programming.

1 Introduction

Algorithm design patterns (ADP) like greedy method, divide-and-conquer, dy-
namic programming (DYN), backtracking (BTR) and branch-and-bound (B&B)
are usually considered as Classics of the Past (going back to days of R. Floyd
and E. Dijkstra). However, ADP can be (semi)formalized as design templates,
specified by correctness conditions, and formally verified either in the Floyd-
Hoare methodology, by means of the Manna-Pnueli proof-principles, or in some
other way.

Nevertheless until 2010 the only formalized method of algorithm design was
greedy method (or greedy algorithms): it was proven in years 1971-1993 [5,13,15]
that if the structure of the domain in an optimization problem is a matroid (or,
is more general, greedoid), then application of greedy algorithm guarantees a
global optimum for the problem.

shilov@iis.nsk.su
http://persons.iis.nsk.su/en/person/shilov

Algorithm Design Patterns 171

Unfortunately, further progress with DYN, BTR and B&B techniques has
degenerated into an extensive collection of “success stories” and “recipes” how
they have been used in the context of particular combinatorial or optimization
problems. This leads to educational situation when the most popular contempo-
rary textbooks on the algorithm design and implementation look like Cooking
Books [1, 4].

BTR and B&B are widely used in design of combinatorial algorithms for
(virtual) graph traversing. In particular, most global optimization methods using
interval techniques employ a branch-and-bound strategy [9] These algorithms
decompose the search domain into a collection of boxes, arrange them into a tree-
structure (according to inclusion), and compute the lower bound on the objective
function by an interval technique. Basically the strategy is an algorithm design
pattern that originates in graph traversal.

In general graph traversal refers to the problem of visiting all the nodes in a
(di)graph to find particular nodes (vertices) that enjoy some property specified
by some Boolean “criterion condition”. A Depth-first search (DFS) is a technique
for traversing a finite graph that visits the child nodes before visiting the sibling
nodes. A Breadth-first search (BFS) is another technique for traversing a finite
undirected graph that visits the sibling nodes before visiting the child nodes.

Sometimes it is not necessary to traverse all vertices of a graph to collect the
set of nodes that meet the criterion function, since there exists some Boolean
“boundary condition” which guarantees that child nodes do not meet the crite-
rion function: Backtracking (BTR) is DFS that uses boundary condition, branch-
and-bound (B&B) is DFS that uses boundary condition. Backtracking became
popular in 1965 due to research of S.W. Golomb and L.D. Baumert [11], but it
had been suggested earlier by D. H. Lehmer. Branch-and-bound was suggested
by A.H. Land and A.G. Doig in 1960 [18].

Formalization and verification of backtracking and branch-and-bound ADP
was attempted in years 2011-2012: a unified ADP for BTR and B&B was for-
malized as a design template, specified by correctness conditions, and formally
verified by means of the Manna-Pnueli proof-principles first [20] and later in the
Floyd-Hoare methodology [23].

Dynamic Programming was introduced by Richard Bellman in the 1950s [3]
to tackle optimal planning problems. At this time, the noun programming had
nothing in common with more recent computer programming and meant planning
(compare: linear programming). The adjective dynamic points out that Dynamic
Programming is related to a change of state (compare: dynamic logic, dynamic
system). Bellman equations are recursive functional equalities for the objective
function that express the optimal solution at the current state in terms of optimal
solutions at changed states. They formalize the following Bellman Principle of
Optimality : an optimal program (or plan) remains optimal at every stage.

At the same time, according to [7], R. Bellman, speaking about the 50s,
explains:

An interesting question is, “Where did the name, dynamic programming,
come from?” The 1950s were not good years for mathematical research.

172 Nikolay Shilov

(...) Hence, I felt I had to do something to shield [the Secretary of De-
fense] and the Air Force from the fact that I was really doing mathematics
inside the RAND Corporation. (...) Let’s take a word that has an abso-
lutely precise meaning, namely dynamic, in the classical physical sense.
It also has a very interesting property as an adjective, and that is it’s
impossible to use the word dynamic in a pejorative sense. Try thinking
of some combination that will possibly give it a pejorative meaning. It’s
impossible. I thought dynamic programming was a good name. It was
something not even a Congressman could object to. So I used it as an
umbrella for my activities.

A preliminary formalization of Dynamic Programming has been published
in [21] and then in [22]. The approach

– formalizes descending Dynamic Programming ADP by a recursive program
scheme (with variable arity of functional symbols),

– formalizes ascending Dynamic Programming as a standard program scheme
(also with variable arity of functional symbols) augmented by generic dy-
namic array to compute the least fix-point (according to the Knaster-Tarski
theorem),

– proves functional equivalence of both schemes, and proves that in general
case we can’t rid of dynamic memory when implement the ascending dy-
namic programming pattern.

This extended abstract represents

in the next section 2: the unified template for Backtracking and Branch-and-
Bound, its (semi-)formal specification and main correctness statements (as
in [20,23]);

in the section 3: the unified templates for descending and ascending Dynamic
Programming, their functional equivalence statement (as in [21,22]).

The final section 4 discusses in brief examples of use of the templates and fur-
ther research topics (in particular, dynamic memory issues and partial evaluation
perspective).

2 Template for Backtracking and Branch-and-Bound

2.1 Abstract Data Type “Teque”

Let us define a special temporal abstract data type (ADT) “theque1” for the
unified representation of BTR and B&B. Theque is a finite collection (i. e. a set)
of values (of some background data type) marked by disjoint “time-stamps”.
The time stamps are readings of “global clock” that counts time in numbers
of “ticks”, they (time-stamps) never change and always are not greater than
current reading of the clock. Let us represent an element x with a time-stamp t

1 Theque – storage (Greek: theke), e. g. “discotheque”.

Algorithm Design Patterns 173

by the pair (x, t). Readings of the clock as well as time-stamps are not “visible”
for any “observer”. Let us assume that this “tick” is indivisible, every action
takes a positive (integer) number of ticks, and the clocks never resets or restarts.

ADT theque inherits some set-theoretic operations: the empteq (i. e. “empty
teque”)) is simply the empty set (∅), set-theoretic equality (=) and inequal-
ity (6=), subsumption (⊂, ⊆). At the same time ADT theque has its own spe-
cific operations, some of these operations are time-independent, some others
— time-sensitive, and some are time-dependent. Let us enumerate below time-
independent operations, and describe time-dependent and time-sensitive opera-
tions in the next paragraphs.

– Operation Set: for every teque T let Set(T) be {x : ∃t((x, t) ∈ T)} the set
of all values that belongs to T (with any time-stamp).

– Operations In and Ni: for every teque T and any value x of the background
type let In(x, T) denote x ∈ Set(T), and let Ni(x, T) denote x 6∈ Set(T).

– Operation Spec (specification): for every teque T and any predicate λx.Q(x)
of values of the background type let teque Spec(T,Q) be the following sub-
teque {(x, t) ∈ T : Q(x)}.
The unique time-dependent operation is a synchronous addition AddTo of

elements to teques. For every finite list of teques T1, ... Tn (n ≥ 1) and finite
set {x1, ... xm} of elements of the background type (m ≥ 0), let execution of
AddTo({x1, . . . xm}, T1, . . . Tn) at time t (i. e. the current reading of the clock
is t) returns n teques T ′1, ... T ′n such, that there exist m moments of time (i.
e. readings of the clock) t = t1 < ... < tm = t′ such that t′ is the moment of
termination of the operation, and for every 1 ≤ i ≤ n the teque T ′i expands
Ti by {(x1, t1), ... (xm, tm)}, i. e. T ′i = Ti ∪ {(x1, t1), ... (xm, tm)}. Let us
observe that this operation is non-deterministic due to several reasons: first, the
set of added elements {x1, ... xm} can be sorted in different manners; next,
time-stamps t1 < ... < tm can be arbitrary (starting at the current time). Let
us write AddTo(x, T1, . . . Tn) instead of AddTo({x}, T1, . . . Tn) in the case of a
singleton set {x}.

There are three pairs of time-sensitive operations: Fir and ReMFir, Las
and RemLas, Elm and RemElm. Let T be a teque. Recall that all values in
this teque have disjoint time-stamps.

– Let Fir(T) be the value of the background type (i. e. without a time-stamp)
that has the smallest (i. e. the first) time-stamp in T , and let RemFir(T) be
the teque that results from T after removal of this element (with the smallest
time-stamp).

– Let Las(T) be the value of the background type (i. e. without a time-stamp)
that has the largest (i. e. the last) time-stamp in T , and let RemLas(T) be
the teque that results from T after removal of this element (with the largest
time-stamp).

We also assume that Elm(T) is “some” element of T (also without any time-
stamp) that is defined according to some “procedure” (unknown for us) and
RemElm(T) is the teque that results from T after removal of this element (with
its time-stamp).

174 Nikolay Shilov

2.2 Unified Template

Let us introduce some notation that unifies representation of BTR and B&B by
a single template for graph traversing: let FEL and REM stay either for Fir
and ReMFir, or for Las and RemLas, or for Elm and RemElm. It means,
for example, that if we instantiate Fir for FEL, then we must instantiate Fir
for FEL and RemFir for REM throughout the template. Instantiation of Fir
and RemFir imposes a queue discipline “first-in, first-out” and specializes the
unified template to B&B template; instantiation of Las and RemLas imposes a
stack discipline “first-in, last-out” and specializes the template to BTR template;
instantiation of Elm and RemElm specializes the unified template to “Deep
Backtracking” or “Branch and Bounds with priorities” templates.

Let us say that a (di)graph is concrete, if it is given by the enumeration of all
vertices and edges, or by the adjacency matrix, or in any other explicit manner.
In contrast, let us say that a (di)graph G is virtual, if the following features are
given:

– a type Node for vertices of G, the initial vertex ini (of this type) such that
every vertex of G is reachable from ini;

– a computable function Neighb : Node → 2Node that for any vertex of G
returns the set of all its neighbors (children in a digraph).

In this notation a unified template for traversing a virtual graph G with the
aid of “easy to cheque”

– a boundary condition B : 2Node ×Node → BOOLEAN ,

– and a decision condition D : 2Node ×Node → BOOLEAN

for collecting all nodes that meet a “hard to cheque”

– criterion condition C : Node→ BOOLEAN

can be represented by the following pseudo-code.
VAR U: Node;

VAR S: set of Node;

VAR Visit, Live, Out: teque of Node;

Live, Visit:= AddTo(ini, empteq, empteq);

Out:= empteq; IF D({ini}, ini) THEN Out:= AddTo(ini, Out);

WHILE Live 6= empteq

DO U:= FEL(Live); Live:= REM(Live);

S:= {W ∈ Neighb(U) : Ni(W, Visit) & ¬B(Set(Visit), W)};
Live, Visit:= AddTo(S, Live, Visit);

Out:= Spec(Out, λx.D(Set(Visit), x));

IF D(Set(Visit), U) THEN Out:= AddTo(U,Out);

OD

Algorithm Design Patterns 175

2.3 Correctness

An algorithm without specification is a tool without manual: no idea how to
use it and what to expect. A specified algorithm without correctness proof is a
non-certified tool, it can be dangerous in use. So we have to specify and prove cor-
rectness of our unified template. We would like to use Floyd – Hoare approach to
algorithm specification and proof [2,10]. In this approach an algorithm is speci-
fied by a precondition and a postcondition for input and output data, correctness
is proved with the aid of loop invariants by induction.

The postcondition is simple: Teque Out consists of all nodes of the graph
G (with time-stamps) that meet the criterion condition C, and each of these
nodes has a single entry (occurrence) in Out.

The precondition is more complicated, and can be presented as a conjunc-
tion of the following clauses.

1. G is a virtual (di)graph, ini is a node of G, Neighb is a function that
computes for every node the set of all its neighbors so, that all nodes of G
can be reached from ini by iterating Neighb.

2. For every node x of G the boundary condition λS.B(S, x) is a monotone
function: B(S1, x)⇒ B(S2, x) for all sets of nodes S1 ⊆ S2 (i. e. if a node is
ruled-out, then it is ruled-out forever).

3. For all nodes x and y of G, for any set of nodes S, if y is reachable from x,
then B(S, x) implies B(S, y) (i. e. if a node is ruled-out then all its successors
are ruled out also).

4. For every node x of G, the decision condition λS.D(S, x) is an anti-monotone
function: D(S2, x)⇒ D(S1, x) for all sets of nodes S1 ⊆ S2 (i. e. a candidate
node may be discarded later).

5. For every set of nodes S, if S ∪ {x ∈ G : B(S, x)} is equal to the set of all
nodes of G, then D(S, x) ⇔ C(x) (i. e. the decision condition D applied to
a set with “complete extension” is equivalent to the criterion condition C).

Proposition 1. The unified template is partially correct with respect to the
above precondition and postcondition, i. e. if the input data meet the precon-
dition and a particular algorithm instantiated from the template terminates on
the input data, then it terminates with the output that meets the postcondition.

Proposition 2. If the input graph is finite then the unified template eventually
terminates, i. e. every particular algorithm instantiated from the template always
halts traversing the graph after a finite number of steps.

The above two propositions imply the following total correctness statement
for Backtracking and Branch-and-Bound.

Corollary 1.
If the input data (including the boundary, decision and criterion conditions B,
D and C) meet the precondition, and the virtual graph G for traversing is finite,
then every particular algorithm instantiated from the template terminates after
O(|G|) iterations of the loop, so that upon termination the set Set(Out) will
consist of all nodes of the graph G that meet the criterion condition C.

Remark 1. For proofs please refer papers [20,23].

176 Nikolay Shilov

3 Templates for Dynamic Programming

3.1 Recursive Descending Dynamic Programming

If to analyse Bellman principle then it is possible to suggest the following recur-
sive scheme as a general pattern for Bellman equations:

G(x) = if p(x) then f(x) else g(x, hi(G(ti(x)), i ∈ [1..n(x)])), (1)

where

– G is a function variable to represent an objective function from some domain
X to some range Y that are to be optimized;

– p is a predicate symbol to represent a known predicate over the same domain
X as above;

– f is a function symbol to represent a known function from the same domain
X to the same range Y ;

– g is a function symbol to represent a known operation with a variable arity
on the same domain X (i.e. a function from X∗ to X);

– all hi and ti, i ∈ N, are functional symbols to represent known functions
from the range Y to the domain X (in case of hi) and to represent known
operations on the domain X (in case of ti).

Here we understand the recursive scheme in the sense of the theory of program
schemata [8, 16, 19]. Let us refer the above recursive scheme as a recursive tem-
plate for descending Dynamic Programming.

3.2 Iterative Ascending Dynamic Programming

Let us consider a function G : X → Y that is defined by the interpreted recursive
scheme (1) of Dynamic Programming. For every argument value v ∈ X, such
that p(v) doesn’t hold, let base be the following set bas(v) of values {ti(v) : i ∈
[1..n(v)]}. Let us remark that for every argument value v, if G(v) is defined,
bas(v) is finite. Let us also observe that if the objective function G is defined for
some argument value v, then it is possible to pre-compute (i.e. compute prior
to the computation of G(v)) the support for this argument value v, i.e. the set
spp(v) of all argument values that occur in the recursive computation of G(v),
according to the following recursive algorithm

spp(x) = if p(x) then {x} else {x} ∪ (
⋃

y∈bas(x)

spp(y)). (2)

Another remark is that for every argument value v, if G(v) is defined, then
spp(v) is finite (since computation of G(v) terminates). Let us say that a function
SPP : X → 2X is an upper support approximation if for every argument value
v, the following conditions hold:

– v ∈ SPP (v),

Algorithm Design Patterns 177

– spp(u) ⊆ SPP (v) for every u ∈ SPP (v),
– if spp(v) is finite then SPP (v) is finite.

Let us consider the case when some upper approximation is easier to compute,
i.e. the (time and/or space) complexity of the available algorithm to compute it
is better than the complexity of the available algorithm that computes G. Then
it makes sense to use iterative ascending Dynamic Programming.

Ascending Dynamic Programming comprises the following steps.

1. Input argument value v and compute SPP (v). Let G be an array (in Pascal
style) var G : Y array of SPP (v) of Y -values indexed by values in SPP (v).
Then compute and save in the array G values of the objective function G
for all arguments u ∈ SPP (v) such that p(u): G[u] := f(u).

2. Expand the set of saved values of the objective function by values that can
be immediately computed on the basis of the set of saved values: for every
u ∈ SPP (v), if G(u) has not been computed yet, but for every w ∈ bas(u)
the value G(w) has already been computed and saved in G[w], then compute
and save G(u) in G[u]: G[u] := g(u, (hi(G(ti(u))), i ∈ [1..n(u)])).

3. Repeat Step 2 until the moment when the value of the objective function for
the argument v is saved.

The ascending Dynamic Programming is an imperative iterative procedure.

3.3 Formalization

Let us formalize iterative ascending Dynamic Programming by means of an
imperative pseudo-code annotated by precondition and postcondition [10].

Precondition:
D is a non-empty set of argument values,
S and P are “trivial” and “target” subsets in D,
F : 2D → 2D is a call-by-value total monotone function,
ρ : 2D×2D → Bool is a call-by-value total function monotone on the second
argument.

Peseudo-code:
VAR U= S, V: subsets of D;

REPEAT V:= U; U:= F(V)∪S UNTIL (ρ(P,U) or U=V)
Postcondition: ρ(P,U) ⇔ ρ(P, T),

where U is the final value of the variable U upon termination
and T is the least set of D such that T = (F (T) ∪ S).

Here the initialization U= S corresponds to the first step of the informal descrip-
tion of ascending Dynamic Programming, the second assignment U:= F(V) in
the loop body corresponds to the second step, and the loop condition ρ(P,U)
corresponds to the condition at the third step; an auxiliary variable V, the first
assignment V:= U and condition U=V are used for termination in case when no
further progress is possible.

We would like to refer to this formalization as the iterative ascending Dy-
namic Programming template.

178 Nikolay Shilov

3.4 Correctness and Equivalence

Proposition 3. (Knaster-Tarski fix-point theorem [14])
Let D be a non-empty set, G : 2D → 2D be a total monotone function, and R0,
R1, ... be the following sequence of D-subsets: R0 = ∅ and Rk+1 = G(Rk) for
every k ≥ 0. Then there exists the least fix-point T ⊆ D of the function G and
R0 ⊆ R1 ⊆ R2 ⊆ . . . Rk ⊆ Rk+1 ⊆ . . . ⊆ T .

The following two propositions are trivial consequences of the above one.

Proposition 4.
Iterative ascending Dynamic Programming template is partially correct.

Proposition 5. Assume that for some input data the precondition of the it-
erative ascending Dynamic Programming template is valid and the domain D
is finite. Then the algorithm generated from the template terminates after |D|
iterations of the loop.

In turn they imply the following (functional) equivalence statement for re-
cursive (descending) and iterative (ascending) Dynamic Programming.

Corollary 2.
Let G be an arbitrary function defined by interpreted recursive scheme 1. Let

– D be a generic dynamic array {(u,G(u)) : u ∈ SPP (v)}, where SPP (v) is
an upper support approximation;

– S be {(u, f(u)) : p(u) and u ∈ SPP (v)} and P be a singleton {(v,G(v))};
– F be λQ ⊆ D. {(u,w) ∈ D | n = n(u),

∃w1, . . . wn : (t1(u), w1), . . . (tn(u), wn) ∈ Q,
and w = g(u, h1(w1), . . . hn(wn))};

– ρ be λQ.(P ⊆ Q) (that is equivalent to λQ ⊆ D.(∃w : (v, w) ∈ Q)).

Then, the algorithm resulting from the iterative ascending Dynamic Program-
ming template after the specified specialization is totally correct, the final value
U of the variable U contains a single pair (v, y), and y in this pair equals to G(v).

Remark 2. For proofs please refer paper [22].

4 Conclusion

We have represented in this extended abstract the unified template for Back-
tracking and Branch-and-Bound, and templates for recursive (descending) and
iterative (ascending) Dynamic Programming, specified these templates by means
of (semi-formal) precondition and postcondition, stated the total correctness and
functional equivalence (for Dynamic Programming) for the templates. “Manual”
formal proofs of propositions and corollaries stated in this extended abstract can
be found in papers [20–23].

In the cited papers [20–23] one can find the following examples of specialisa-
tion of the presented templates:

Algorithm Design Patterns 179

– in papers [20, 23] unified BTR and B&B template was specialized to solve
Discrete Knapsack Problem,

– in papers [21,22] Dynamic Programming templates were specialised to solve
a toy sample Dropping Bricks Puzzle as well as for solving finite position
games and to Cocke-Younger-Kasami algorithm for parsing of context-free
language.

Basically, the primary purpose of the specified and verified templates for
algorithm design patterns is to use them for (semi-)automatic specialization of
the patterns to generate correct but more efficient algorithms to solve concrete
problems. One may observe that this purpose is closely related to purpose of
Mixed Computations [6] and/or Partial Evaluation [12]; the difference consists
in level of consideration: in our case we speak about algorithm design and use
pseudo-code while in Mixed Computations and Partial Evaluation programming
languages and program code are in use. Nevertheless further studies of algorithm
design templates from Mixed Computations and Partial Evaluation perspective
may be an interesting research topic. In particular, it may be interesting to try
to building-in algorithm design templates into an educational IDE (Integrated
Development Environment) to support (semi-)automatic algorithm generation.

Another interesting topic for theoretical research is a need of dynamic mem-
ory either for teque or generic array implementation. In particular, we demon-
strated that every function defined by the recursive scheme of Dynamic Pro-
gramming may be computed by an iterative program with a generic dynamic
array. The advantage of the translation is the use of an array instead of a stack
generally required to translate recursion. Nevertheless a natural question arises:
may finite static memory suffices for computing this function? Unfortunately, in
general case the answer is negative according to the following proposition proved
by M.S. Paterson and C.T. Hewitt [16,19].

Proposition 6. The following special case of general recursive scheme of de-
scending Dynamic Programming (1)

F (x) = if p(x) then x else f(F (g(x)), F (h(x)))

is not equivalent to any standard program scheme (i.e. an uninterpreted iterative
program scheme with finite static memory).

This statement does not mean that dynamic memory is always required; it
just means that for some interpretations of uniterpreted symbols p, f , g and h
the size of required memory depends on the input data. But if p, f , g and h
are interpreted, it may happen that function F can be computed by an iterative
program with a finite static memory. For example, it is possible to prove that
Dropping Bricks Puzzle [22] can be solved by an iterative algorithm with two
integer variables. Two other examples of this kind are the factorial function and
Fibonacci numbers

Fac(n) = if n = 0 then 1else n× Fac(n− 1),

180 Nikolay Shilov

Fib(n) = if n = 0 or n = 1 then 1 else F ib(n− 2) + Fib(n− 1);

they both match the pattern of scheme in the above proposition, but three inte-
ger variables suffice to compute them by iterative programs. So, the next problem
for further research is about those of functions that can be computed with fi-
nite static memory (i.e. like the optimal number of bricks droppings, factorial
values or Fibonacci numbers) by iterative imperative algorithms generated from
ascending dynamic programming.

Another research topic is about use of different fix-points in the Dynamic
Programming context. A unified logical approach to a variety of fix points can
be found in [17]; a natural question follows: what if to use for algorithm design
other fix-points (studied in the cited paper) than the least one?

References

1. Aho A.V., Hopcroft J. E., Ullman J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. Apt K.R., de Boer F.S., Olderog E.-R. Verification of Sequential and Concurrent
Programs. Third edition. Springer, 2009.

3. Bellman, R. The theory of dynamic programming. Bulletin of the American Math-
ematical Society, 1954, v.60, p.503-516.

4. Cormen T.H., Leiserson C.E., Rivest R.L., and Stein C. Introduction to Algorithms.
Third edition. The MIT Press, 2009.

5. Edmonds J. Matroids and the greedy algorithm. Mathematical Programming, 1971,
v.1, p.127113.

6. Ershov A.P. Mixed computation: potential applications and problems for study.
Theor. Comp. Sci., 1982, v18(1), p.41-67.

7. Gimbert, H. Games for Verification and Synthesis. Slides for 10th School for young
researchers about Modelling and Verifying Parallel processes (MOVEP). — http:

//movep.lif.univ-mrs.fr/documents/marta-slides1.pdf.
8. Greibach, S.A. Theory of Program Structures: Schemes, Semantics, Verification.

Springer, 1975. (Lecture Notes in Computer Science, v.36.)
9. Gray P., Hart W., Painton L., Phillips C., Trahan M., Wagner J. A Survey of Global

Optimization Methods. Sandia National Laboratories, 1997, available at http://

www.cs.sandia.gov/opt/survey/main.html.
10. Gries D. The Science of Programming. Springer, 1987.
11. Golomb S.W. and Baumert L.D. Backtrack Programming. Journal of ACM, 12(4),

1965, p.516-524.
12. Jones J.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Pro-

gram Generation. Prentice Hall International, 1993, available at http://www.itu.
dk/people/sestoft/pebook/.

13. Helman P., Moret B.M.E., Shapiro H.D. An exact characterization of greedy struc-
tures. SIAM Journal on Discrete Mathematics, 1993, v.6(2), p.274283.

14. Knaster, B., Tarski, A. Un theoreme sur les fonctions d’ensembles. Ann. Soc. Polon.
Math., 1928, n.6, p.133-134.

15. Korte B., Lovasz L. Mathematical structures underlying greedy algorithms. Fun-
damentals of Computation Theory: Proceedings of the 1981 International FCT-
Conference, Szeged, Hungaria, August 2428, 1981, Lecture Notes in Computer
Science, 1981, v.117, p.205209.

http://movep.lif.univ-mrs.fr/documents/marta-slides1.pdf
http://movep.lif.univ-mrs.fr/documents/marta-slides1.pdf
http://www.cs.sandia.gov/opt/survey/main.html
http://www.cs.sandia.gov/opt/survey/main.html
http://www.itu.dk/people/sestoft/pebook/
http://www.itu.dk/people/sestoft/pebook/

Algorithm Design Patterns 181

16. Kotov V.E., Sabelfeld V.K. Theory of Program Schemata. (Teoria Skhem Pro-
gramm.) Science (Nauka), 1991. (In Russian.)

17. Lisitsa A. Temporal Access to the Iteration Sequences: A Unifying Approach to
Fixed Point Logics. Eighteenth International Symposium on Temporal Represen-
tation and Reasoning, TIME 2011, Lübeck , Germany, September 12-14, 2011.
IEEE Computer Society, 2011, p.57-63.

18. Land A. H. and Doig A. G. An automatic method of solving discrete programming
problems. Econometrica, 28(3), 1960, p.497-520.

19. Paterson M.S., Hewitt C.T. Comperative Schematology. Proc. of the ACM Conf.
on Concurrent Systems and Parallel Computation, 1970, p.119-127.

20. Shilov, N.V. Algorithm Design Template base on Temporal ADT. Proceedings of
18th International Symposium on Temporal Representation and Reasoning, 2011.
IEEE Computer Society. P.157-162.

21. Shilov N.V. Inverting Dynamic Programming. Proceedings of the Third Interna-
tional Valentin Turchin Workshop on Metacomputation, 2012. Publishing House
University of Pereslavl. P.216-227.

22. Shilov N.V. Unifying Dynamic Programming Design Patterns. Bulletin of the
Novosibirsk Computing Center (Series: Computer Science, IIS Special Issue), v.34,
2012, p.135-156.

23. Silov N.V. Verification of Backtracking and Branch and Bound Design Templates.
Automatic Control and Computer Sciences, 2012, v.46(7), p.402409.

	Introduction
	Template for Backtracking and Branch-and-Bound
	Abstract Data Type ``Teque''
	Unified Template
	Correctness

	Templates for Dynamic Programming
	Recursive Descending Dynamic Programming
	Iterative Ascending Dynamic Programming
	Formalization
	Correctness and Equivalence

	Conclusion

